mail unicampaniaunicampania webcerca

    Enrica PIROZZI

    Insegnamento di SPATIAL RANDOM PROCESSES

    Corso di laurea magistrale in DATA SCIENCE

    SSD: MAT/06

    CFU: 6,00

    ORE PER UNITÀ DIDATTICA: 48,00

    Periodo di Erogazione: Secondo Semestre

    Italiano

    Lingua di insegnamento

    INGLESE

    Contenuti

    Elementi di probabilità. Definizione e proprietà dei processi stocastici.
    Il moto browniano.
    Probabilità condizionata.
    Martingale.
    Processi di Markov.
    Elementi essenziali sull'integrale stocastico e
    Equazioni differenziali stocastiche (SDE)
    Simulazione.

    Testi di riferimento

    Paolo Baldi: “Stochastic Calculus, An Introduction Through Theory and Exercises”, Springer

    Obiettivi formativi

    Lo scopo di questo corso è fornire l'approccio matematico alla teoria dei processi stocastici e alcuni algoritmi di base per la loro simulazione.

    Prerequisiti

    No

    Metodologie didattiche

    Costituiranno il corso lezioni frontali teoriche, risoluzione di esercizi e algoritmi di simulazione in R. Per ogni lezione verranno forniti anche appunti scritti dal docente.

    Metodi di valutazione

    Allo studente sarà richiesta la presentazione orale di un progetto comprensivo di domande teoriche e di alcuni esercizi.

    Programma del corso

    Facendo riferimento al testo di Paolo Baldi: “Stochastic Calculus, An Introduction Through Theory and Exercises”, Springer,
    i contenuti del corso sono di seguito elencati:
    CHAPTER 1- Elements of Probability
    1.1- Probability spaces, random variables
    1.2- Variance, covariance, law of a r.v.
    1.3- Independence, product measure
    1.4- Probabilities on Rm
    1.5- Convergence of probabilities and random variables
    1.6- Characteristic functions
    1.7- Gaussian laws
    1.8- Simulation
    1.9- Measure-theoretic arguments
    CHAPTER 2- Stochastic Processes
    2.1- General facts
    2.2- Kolmogorov’s continuity theorem (no proof)
    CHAPTER 3- Brownian Motion
    3.1- Definition and general facts
    3.2- The law of a continuous process, Wiener measure
    3.3- Regularity of the paths (no proof)
    3.4- Asymptotics (no proofs)
    3.5- Stopping times
    3.6- The stopping theorem (no proof)
    3.7 The simulation of the Brownian motion
    CHAPTER 4 – Conditional Probability
    4.1- Conditioning
    4.2- Conditional expectations
    4.3- Conditional laws (only the definition)
    CHAPTER 5 –Martingales
    5.1- Definitions and general facts
    5.2- Discrete time martingales
    5.3- Discrete time martingales: a.s. convergence

    CHAPTER 6 - Markov Processes
    6.1 Definitions and general facts
    6.2 The Feller and strong Markov properties
    CHAPTER 7-The Stochastic Integral
    7.1- Introduction
    7.2- Elementary processes
    7.3- The stochastic integral (definition and properties)
    7.4- The martingale property
    CHAPTER 8-Stochastic Calculus
    8.1- Ito’s formula
    CHAPTER 9- Stochastic Differential Equations (SDE)
    9.1 - Definitions
    9.2 – Examples
    CHAPTER 11- Simulation
    11.1 Numerical approximation of an SDE
    11.5 Other Schemes: The Euler simulation scheme.
    Nel programma del corso sono compresi anche alcuni esercizi dei capitoli su elencati.

    English

    Teaching language

    English

    Contents

    Elements of Probability. Definition and properties of Stochastic Processes.
    The Brownian Motion.
    Conditional Probability.
    Martingales.
    Markov Processes. Essentials on the stochastic integral and
    Stochastic Differential Equations (SDE)
    Simulation.

    Textbook and course materials

    Paolo Baldi: “Stochastic Calculus, An Introduction Through Theory and Exercises”, Springer

    Course objectives

    The purpose of this course is to provide the mathematical approach to the theory of stochastic processes and some basic algorithms for their simulation.

    Prerequisites

    No

    Teaching methods

    Theoretical lectures, resolutions of exercises and simulation algorithms by R will constitute the course. Notes written by the teacher will be also provided for each lecture.

    Evaluation methods

    The oral presentation of a project including theoretical questions and some exercises will be required to the student.

    Course Syllabus

    Contents of the course: SPATIAL RANDOM PROCESSES (2023/2024)
    Referring to the book of Paolo Baldi: “Stochastic Calculus, An Introduction Through Theory and Exercises”, Springer

    CHAPTER 1- Elements of Probability
    1.1- Probability spaces, random variables
    1.2- Variance, covariance, law of a r.v.
    1.3- Independence, product measure
    1.4- Probabilities on Rm
    1.5- Convergence of probabilities and random variables
    1.6- Characteristic functions
    1.7- Gaussian laws
    1.8- Simulation
    1.9- Measure-theoretic arguments
    CHAPTER 2- Stochastic Processes
    2.1- General facts
    2.2- Kolmogorov’s continuity theorem (no proof)
    CHAPTER 3- Brownian Motion
    3.1- Definition and general facts
    3.2- The law of a continuous process, Wiener measure
    3.3- Regularity of the paths (no proof)
    3.4- Asymptotics (no proofs)
    3.5- Stopping times
    3.6- The stopping theorem (no proof)
    3.7 The simulation of the Brownian motion
    CHAPTER 4 – Conditional Probability
    4.1- Conditioning
    4.2- Conditional expectations
    4.3- Conditional laws (only the definition)
    CHAPTER 5 –Martingales
    5.1- Definitions and general facts
    5.2- Discrete time martingales
    5.3- Discrete time martingales: a.s. convergence

    CHAPTER 6 - Markov Processes
    6.1 Definitions and general facts
    6.2 The Feller and strong Markov properties
    CHAPTER 7-The Stochastic Integral
    7.1- Introduction
    7.2- Elementary processes
    7.3- The stochastic integral (definition and properties)
    7.4- The martingale property
    CHAPTER 8-Stochastic Calculus
    8.1- Ito’s formula
    CHAPTER 9- Stochastic Differential Equations (SDE)
    9.1 - Definitions
    9.2 – Examples
    CHAPTER 11- Simulation
    11.1 Numerical approximation of an SDE
    11.5 Other Schemes: The Euler simulation scheme.
    Some exercises of all above chapters are also included in the program of the course.

    facebook logoinstagram buttonyoutube logotype