Bruno CARBONARO
Insegnamento di PROBABILITY THEORY
Corso di laurea in DATA ANALYTICS
SSD: MAT/07
CFU: 6,00
ORE PER UNITÀ DIDATTICA: 48,00
Periodo di Erogazione: Secondo Semestre
Italiano
Lingua di insegnamento | INGLESE |
Contenuti | Elements of measure theory in R, with special concern with the integral representation of measures. Elements of Theory of Distributions. Convex functions. Finite Difference Equations. Special properties of the expected value. Conditional expected value. Special functions associated with a random variable and its moments. Uniform process. The Poisson process. The random walk. The gambler's ruin. Discrete Markov chains. Martingales. |
Testi di riferimento | Elements of measure theory in R, with special concern with the integral representation of measures. Elements of Theory of Distributions. Convex functions. Finite Difference Equations. Special properties of the expected value. Conditional expected value. Special functions associated with a random variable and its moments. Uniform process. The Poisson process. The random walk. The gambler's ruin. Discrete Markov chains. Martingales. |
Obiettivi formativi | Acquisizione della capacità di comprendere i metodi del calcolo delle probabilità e del loro utilizzo in vista delle applicazioni statistiche |
Prerequisiti | Una buona conoscenza dell'algebra e almeno dell'analisi matematica delle funzioni di una variabile |
Metodologie didattiche | Lezioni frontali, con libera discussione di numerosi esempi e problemi |
Metodi di valutazione | Esame orale, che trae spunto dalla discussione di un problema applicativo e dalla sua soluzione per l'analisi del possesso delle nozioni teoriche fondamentali |
Programma del corso | Calcolo Combinatorio: il fattoriale, disposizioni semplici e con ripetizioni, permutazioni, combinazioni semplici, coefficienti binomiali. |
English
Teaching language | English |
Contents | Elements of measure theory in R, with special concern with the integral representation of measures. Elements of Theory of Distributions. Convex functions. Finite Difference Equations. Special properties of the expected value. Conditional expected value. Special functions associated with a random variable and its moments. Uniform process. The Poisson process. The random walk. The gambler's ruin. Discrete Markov chains. Martingales. |
Textbook and course materials | B. V. GNEDENKO & A. YA. KHINCHIN, An elementary introduction to the theory of probability, W. H. Freeman and Company, San Francisco/London (1961) |
Course objectives | Acquisition of the ability to understand the methods for the computation of probabilities in many different contexts, and their use in view of statistical applications |
Prerequisites | A good acquaintance with elementary algebra and of Calculus, at least as far as the functions of one variable are concerned |
Teaching methods | Front lectures and free discussions of several examples and problems |
Evaluation methods | Oral examination, starting from the discussion of a problem arising from applications to arrive at the analysis of student's acquaintance with basic theoretical notions |
Course Syllabus | Combinatorial Calculus: factorials, dispositions (simple and with repetitions, permutations, simple choices, binomial coefficients. |