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Introduction: new trends for Big Data

New pervasive services enabled by real-time Big Data analytics
(e.g., Smart City)




Data Stream Processing (DSP)

» Continuous processing of unbounded sequences: data streams
» Data processed “on the fly”
» Applications represented as DAGs (operators + streams)
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DSP from Cloud to Fog

» Latency requirements to support real-time services
» |dea: moving computation towards data sources and consumers
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DSP in the fog: old and new challenges

Adapting to variable conditions Decentralized control
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Self-adaptive DSP: Elasticity

» Parallel replicas of operators to face higher data rates
» Elastic parallelism allows to avoid over- and under-provisioning
» Goal: decentralized elasticity, accounting for model uncertainty
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EDF: a framework for Decentralized Elasticity

Based on Hierarchical MAPE:

» Centralized Application Manager

» Decentralized Operator
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Elasticity Policy for the Operator Manager

» Number of parallel replicas adapted to input data rate

> Heterogeneous infrastructure: several types of computing resources
available to run the replicas
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» resources cost: depends on amount and type of used resources

Operating costs for a single operator

» adaptation cost: performance degradation due to reconfiguration
» SLO violation: paid whenever response time (or throughput) violates a
given threshold

— would like to minimize all of them in the long-term
— problem formulated as a Markov Decision Process



Function Approximation for MDPs

» Problem: standard MDP resolution techniques rely on “Q table”
— do not scale

» ldea: replacing the Q table with a parametric function Q(S, a,0)
» Need to store (and compute) only the parameters 6

» We focus on linear Function Approximation:

A,

Q(Sv a, 0) = Zi ¢i(57 8)9,-

» Weights 6: updated using Stochastic Gradient Descent
» Features ¢: critical choice for good accuracy!



Defining features: Tile Coding

Tile Coding: cover the state space with “tilings”

> “similar” states covered by a single tile (i.e., a single feature)
» different number and shape of tiles
» multiple overlapping tilings combined for increased accuracy
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Results

> We compare the average cost achieved by
various resolution algorithms by simulation

>

Avg. cost

To deal with model uncertainty: reinforcement

learning
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Adaptive Tile Coding

» Tile Coding still requires expertise to choose size/shape of tiles
» If the problem changes, may need new tilings

» Adaptive Tile Coding: identify best partitioning in an automated way
> Start with one large tile, then iteratively split to increase accuracy
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Elasticity: the Application Manager

Application Manager
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» Application Manager should coordinate local decisions of OMs
> First issue to tackle: adaptation overhead
» A heuristic based on a token bucket

» OMs adaptation decisions must be accepted by AM

» Each adaptation requires a token

» Different tokens generated based on observed performance

V. Cardellini, F. Lo Presti, M. Nardelli, G. Russo Russo,
"Decentralized self-adaptation for elastic data stream processing",
Future Generation Computing Systems, Vol. 87, pp. 171-185, October 2018.
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Results

» EDF implemented on top of Apache Storm

» With token bucket, much less adaptations and negligible
performance degradation
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Open challenges

Controlling performance of modern DSP frameworks require models to
account for additional factors, e.g.:

» Load distribution among stateful parallel replicas may not be

balanced

» Operators are not independent: backpressure
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Thanks for your attention!
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