

Performance and energy models In SDN-enabled Fog systems

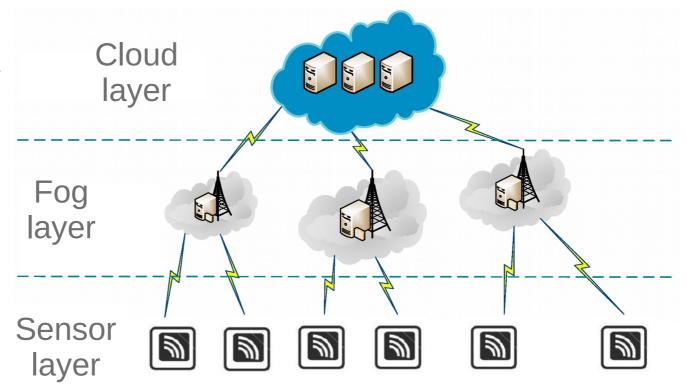
Claudia Canali, <u>Riccardo Lancellotti</u>

University of Modena and Reggio Emilia Department of engineering "Enzo Ferrari"

Outline

- Architectures for Fog computing
 - Motivations
 - Optimization models
 - Load balancing algorithms
- Energy models for SDN networks
 - Motivations
 - Data collection infrastructure

Architectures for Fog computing

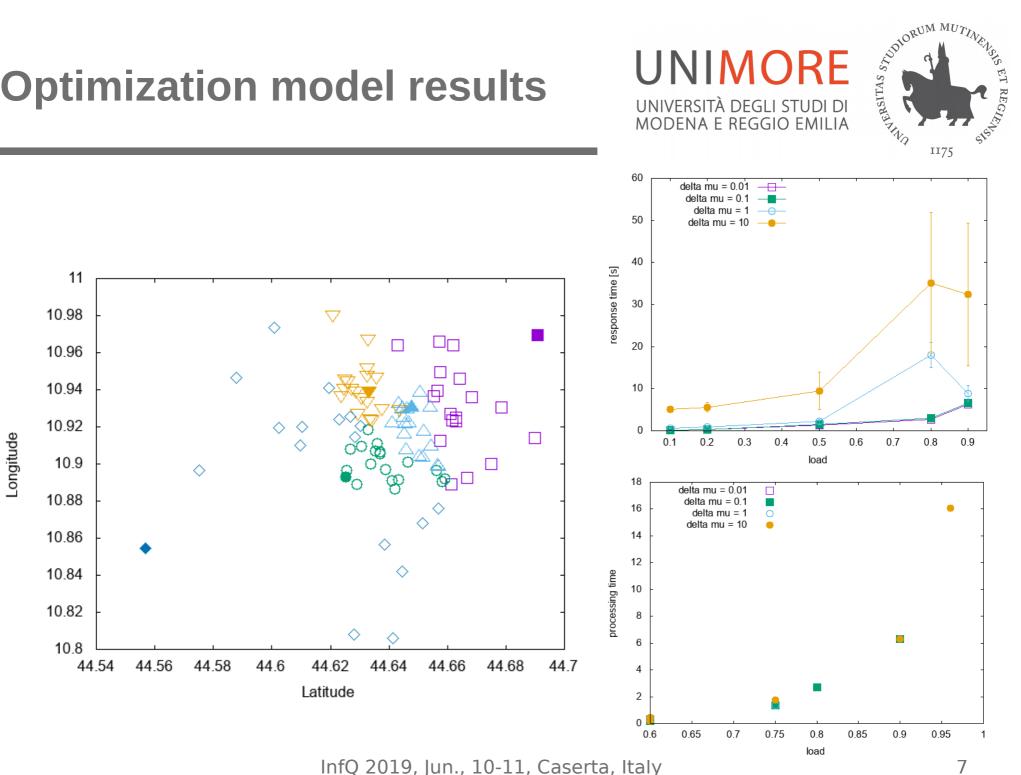


- Cyber-physical environments with geographically distributed sensors
 - Huge amount of information \rightarrow Scalability
 - Delay-sensitive applications \rightarrow Latency
- Some examples:
 - Pipeline monitoring, environmental monitoring
 - Traffic control / autonomous driving

Fog computing vision

- Intermediate layer of Fog nodes
- Services on the edge: filtering, aggregation, ...
- Lower latency
- Higher scalability

What we are doing

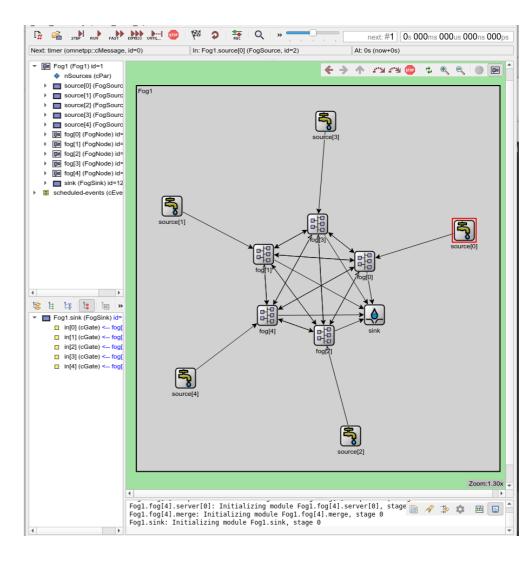

- Smart city scenario
 - → Modena, environmental monitoring
- Optimization models:
 - Mapping sensors over Fog nodes
 → placement
 - Optimal set of Fog nodes
 → selection + placement
 - Approach: solvers (AMPL + Knitro)
 + heuristics (GA, ...)
- Load balancing among Fog nodes
 - Management of traffic surges
 - Simulation of a Fog infrastructure (Omnet++)

Optimization model results

7

Who is working on this

- Optimization problem
- Joint work with OR group in Reggio Emilia (REGOR):
 - Manuel Iori (UniMoRE)
 - Thiago Alves de Queiroz (Univ. Fed. Goiàs, BR)


Who is working on this

A A HILL A HILL

- Load balancing models
- Prof. Roberto Beraldi, University of Rome "La Sapienza"

Energy models for SDN networks

- Increasing popularity of SDN technologies
- Scenarios:
 - Agile re-configuration of Cloud data centers
 - Geographically distributed systems (e.g., B4, Fog)
- Challenges:
 - Energy models for SDN devices not available
 - Coordination strategies in distributed control plane (multi-controller systems)

- SDNLab: testbed for SDN-based systems
 - Multiple workstations as traffic generators (synthetic and realistic traffic traces)
 - One or more SDN switches
 - One or more workstations as controllers
 - Data collection support (SNMP monitoring, IPcapable power meters)
 - Multiple controller software considered

SDNLab overview

- Energy model:
 - Power consumption vs. network traffic
 - Power consumption vs. number and type of rules
- Multi-controller analysis:
 - Controller scalability (comparison of multiple platforms)
 - Static and dynamic load balancing in controllers (controller/switch mapping)

Who is working on this

- Joint work with Computer Networks Research group:
 - M. Casoni, C. A. Grazia, M. Klapez,
- And CESIA:
 - M. Barbieri, D. Neri

Performance and energy models In SDN-enabled Fog systems

Claudia Canali, <u>Riccardo Lancellotti</u>

University of Modena and Reggio Emilia Department of engineering "Enzo Ferrari"