
Exploiting Architecture/Runtime Model-driven
Traceability for Performance Improvement

Department of Information Engineering, Computer Science and Mathematics

University of L’Aquila, Italy

Vittorio Cortellessa, Daniele Di Pompeo,
Romina Eramo, Michele Tucci

{name.surname}@univaq.it

INFQ 2019 - June 10-11 Exploiting Architecture/Runtime Model-driven Traceability for Performance Improvement

Introduction
2

■ Software architectures are growing in complexity and heterogeneity

■ Model-Driven Engineering (MDE) has shown to be effective in managing complexity by introducing
automation at a higher level of abstraction

■ Vision: exploiting design-runtime relationships to detect software problems and deduce
improvement actions (e.g., to meet new (non-)functional requirements)

■ A major challenge is to achieve an efficient integration between design and runtime aspects of
systems

■ MDE techniques can support the development of complex systems by managing relationships
between a running system and its architectural models

INFQ 2019 - June 10-11 Exploiting Architecture/Runtime Model-driven Traceability for Performance Improvement

Overview of the approach

TRACEABILITY
LINKS

GENERATION

Design
Models

Log
Models

Traceability
Links

PERFORMANCE
INDICES

ANNOTATION
Annotated

Design
Models

PERFORMANCE
ANTIPATTERNS

DETECTION
Suggested

Refactoring
Actions

JTL PADRE

■ A Model-driven approach that exploits design/runtime interactions to support designers in :

○ Performance analysis

○ Architectural refactoring

■ The process underlying the approach:

3

INFQ 2019 - June 10-11 Exploiting Architecture/Runtime Model-driven Traceability for Performance Improvement

JTL: Janus Transformation Language

Eclipse EMF-based model transformation tool tailored to support bidirectionality and
change propagation and to keep traceability during software design.

■ Generation of traceability links between heterogeneous
software/runtime models

■ Storage of links in an explicit way by means of
traceability models

■ Propagation of feedback obtained from the tracing
analysis back to the software models

jtl.univaq.it

4

INFQ 2019 - June 10-11 Exploiting Architecture/Runtime Model-driven Traceability for Performance Improvement

 PADRE: Performance Antipatterns Detection and model REfactoring

Eclipse-based framework that enables performance antipatterns detection on UML-MARTE
software models and model refactoring based on detection results.

■ A performance antipattern describes those bad practices
in software designing that might introduce performance
degradation into the system.

■ User-driven refactoring of UML-MARTE software design
models, driven by performance antipatterns detection

git.io/SeaLabAQ-padre

5

INFQ 2019 - June 10-11 Exploiting Architecture/Runtime Model-driven Traceability for Performance Improvement

The E-Shopper case study
6

■ Open source e-commerce web application
based on microservices

■ 9 application microservices, 8 databases,
4 infrastructure microservices, 42 API endpoints

■ Designed in UML
(Component, Deployment and Sequence Diagrams)

■ Developed using the Spring Cloud framework

■ Deployed on Docker

Available at:
git.io/fh9Z8

INFQ 2019 - June 10-11 Exploiting Architecture/Runtime Model-driven Traceability for Performance Improvement

UML design: excerpt of the home page scenario
The E-Shopper case study 7

Static view: COMPONENT DIAGRAM

Deployment view: DEPLOYMENT DIAGRAM

Dynamic view: SEQUENCE DIAGRAM

The approach requires three different design views

INFQ 2019 - June 10-11 Exploiting Architecture/Runtime Model-driven Traceability for Performance Improvement

Overall approach

Monitoring
data

JTL

UML
Metamodel

UML
Model

Log
Metamodel

Log
Model

Traceability
Metamodel

UML+MARTE
Metamodel

PADRE

Performance
Antipattern
detection

Model
refactoring

Performance
analysis

Runtime
information

mining

MONITORING
INFRASTRUCTURE

SYSTEM
REFACTORING

Traceability Model

UML
Model

Log
Model

Design-Runtime
correspondences

Traceability links
engine Performance

indices
annotator

UML+MARTE
Model

IN OUT

IN OUT

IN

C2

IN

IN

OUT

APPLIED TO

LEFT

C2 C2 C2

RIGHT

OUT

IN

EXECUTE

Suggested
Refactoring

Actions

OUT MONITORED

IMPLEMENTED

8

INFQ 2019 - June 10-11 Exploiting Architecture/Runtime Model-driven Traceability for Performance Improvement

Runtime information mining

Monitoring
data

JTL

UML
Metamodel

UML
Model

Log
Metamodel

Log
Model

Traceability
Metamodel

UML+MARTE
Metamodel

PADRE

Performance
Antipattern
detection

Model
refactoring

Performance
analysis

Runtime
information

mining

MONITORING
INFRASTRUCTURE

SYSTEM
REFACTORING

Traceability Model

UML
Model

Log
Model

Design-Runtime
correspondences

Traceability links
engine Performance

indices
annotator

UML+MARTE
Model

IN OUT

IN OUT

IN

C2

IN

IN

OUT

APPLIED TO

LEFT

C2 C2 C2

RIGHT

OUT

IN

EXECUTE

Suggested
Refactoring

Actions

OUT MONITORED

IMPLEMENTED

1

Runtime data (logs/traces) are gathered from a
monitoring infrastructure over a running system1

9

INFQ 2019 - June 10-11 Exploiting Architecture/Runtime Model-driven Traceability for Performance Improvement

Distributed tracing
Monitoring infrastructure 10

COLLECTORINSTRUMENTATION
API

Spring Cloud Sleuth

PERSISTENT
STORAGE

Method used to profile and monitor applications,
especially those built using a microservices architecture

RAW LOG

INFQ 2019 - June 10-11 Exploiting Architecture/Runtime Model-driven Traceability for Performance Improvement

Runtime information mining

Monitoring
data

JTL

UML
Metamodel

UML
Model

Log
Metamodel

Log
Model

Traceability
Metamodel

UML+MARTE
Metamodel

PADRE

Performance
Antipattern
detection

Model
refactoring

Performance
analysis

Runtime
information

mining

MONITORING
INFRASTRUCTURE

SYSTEM
REFACTORING

Traceability Model

UML
Model

Log
Model

Design-Runtime
correspondences

Traceability links
engine Performance

indices
annotator

UML+MARTE
Model

IN OUT

IN OUT

IN

C2

IN

IN

OUT

APPLIED TO

LEFT

C2 C2 C2

RIGHT

OUT

IN

EXECUTE

Suggested
Refactoring

Actions

OUT MONITORED

IMPLEMENTED

1

2
11

Logs are automatically
transformed into Log Models
conforming to a Log Metamodel

2

INFQ 2019 - June 10-11 Exploiting Architecture/Runtime Model-driven Traceability for Performance Improvement

From raw logs to models
Runtime information mining 12

16bb4e7b689f807a : Span

duration: 27000
kind: SERVER
timestamp: 18/11/20,09:52:48..

pop400_ru5 : Log

149c4cef3ac7f19f :
Trace 4ad2da86e8767b82 : Span

duration: 24000
kind: CLIENT
timestamp: 18/11/20,09:52:48..

http:/categories/category :
EndPoint

gateway :
Service

A Java transformation automatically generates
Log Models (serialized in XMI) from raw logs

RAW LOG

LOG MODEL

INFQ 2019 - June 10-11 Exploiting Architecture/Runtime Model-driven Traceability for Performance Improvement

Design-Runtime traceability with JTL

Monitoring
data

JTL

UML
Metamodel

UML
Model

Log
Metamodel

Log
Model

Traceability
Metamodel

UML+MARTE
Metamodel

PADRE

Performance
Antipattern
detection

Model
refactoring

Performance
analysis

Runtime
information

mining

MONITORING
INFRASTRUCTURE

SYSTEM
REFACTORING

Traceability Model

UML
Model

Log
Model

Design-Runtime
correspondences

Traceability links
engine Performance

indices
annotator

UML+MARTE
Model

IN OUT

IN OUT

IN

C2

IN

IN

OUT

APPLIED TO

LEFT

C2 C2 C2

RIGHT

OUT

IN

EXECUTE

Suggested
Refactoring

Actions

OUT MONITORED

IMPLEMENTED

13

Design-Runtime correspondences are defined as
bidirectional model transformations at metamodel
level

The JTL Traceability engine generates traceability
links between UML and Log Models

3

3

4

4

INFQ 2019 - June 10-11 Exploiting Architecture/Runtime Model-driven Traceability for Performance Improvement

Traceability model between the Log and UML models
Design-Runtime traceability with JTL 14

Log Model Traceability Model UML Model

Ec
lip

se
-E

MF
 tr

ee
 vi

ew
 in

 JT
L

INFQ 2019 - June 10-11 Exploiting Architecture/Runtime Model-driven Traceability for Performance Improvement

Log2UML correspondences specification
Design-Runtime traceability with JTL 15

A JTL transformation defined between Log and UML

Map a Trace element in the Log domain to a UseCase element in the UML
domain. The where clause invokes the execution of the Span2Message
relation

Map a Log Span to a UML Message inside an Interaction. The where clause
invokes the execution of the EndPoint2Signature relation

Map a Log EndPoint of a Span to a UML Operation by matching names. The
UML Operation must be referenced in the signature of the Message

Map a Log Service to a UML Component by matching names

INFQ 2019 - June 10-11 Exploiting Architecture/Runtime Model-driven Traceability for Performance Improvement

Performance analysis and refactoring with PADRE

Monitoring
data

JTL

UML
Metamodel

UML
Model

Log
Metamodel

Log
Model

Traceability
Metamodel

UML+MARTE
Metamodel

PADRE

Performance
Antipattern
detection

Model
refactoring

Performance
analysis

Runtime
information

mining

MONITORING
INFRASTRUCTURE

SYSTEM
REFACTORING

Traceability Model

UML
Model

Log
Model

Design-Runtime
correspondences

Traceability links
engine Performance

indices
annotator

UML+MARTE
Model

IN OUT

IN OUT

IN

C2

IN

IN

OUT

APPLIED TO

LEFT

C2 C2 C2

RIGHT

OUT

IN

EXECUTE

Suggested
Refactoring

Actions

OUT MONITORED

IMPLEMENTED

16

6
PADRE detects performance antipatterns on the
UML+MARTE Model

PADRE suggests the most promising refactoring
actions that shall remove detected antipatterns and
improve system performance

6

7

7

INFQ 2019 - June 10-11 Exploiting Architecture/Runtime Model-driven Traceability for Performance Improvement

Promising refactoring actions - Running Example (1/2)
Performance analysis and refactoring with PADRE 17

■ PADRE suggests to resolve the Pipe and Filter (PaF) performance antipattern on the Items Server
microservice by applying the Move operation refactoring action

■ The most demanding operation findProduct() of Product Server is moved to a new microservice
(Items Server 2)

■ The new Items Server 2 microservice is deployed on a new node (the Items Server 2 Docker
container)

■ After the refactoring, the response time of the Web scenario has been improved by 13.34%,
whereas the response time of the Warehouse scenario has been improved by 5.04%

INFQ 2019 - June 10-11 Exploiting Architecture/Runtime Model-driven Traceability for Performance Improvement

Recap
18

■ We introduced an approach to support the identification and solution of performance problems
on a running system

■ Monitoring information has been linked to design models by means of the JTL traceability engine

■ Traceability links have been exploited to annotate performance indices on design models

■ PADRE has been used to detect performance antipatterns and provide promising refactoring
actions

■ The approach has been applied on a case study that was developed and monitored using
industrial standard technologies

Continue… →

19

Work in progress area

INFQ 2019 - June 10-11 Exploiting Architecture/Runtime Model-driven Traceability for Performance Improvement

Runtime information mining (ongoing)

Monitoring
data

JTL

UML
Metamodel

UML
Model

Log
Metamodel

Log
Model

Traceability
Metamodel

UML+MARTE
Metamodel

PADRE

Performance
Antipattern
detection

Model
refactoring

Performance
analysis

Runtime
information

mining

MONITORING
INFRASTRUCTURE

SYSTEM
REFACTORING

Traceability Model

UML
Model

Log
Model

Design-Runtime
correspondences

Traceability links
engine Performance

indices
annotator

UML+MARTE
Model

IN OUT

IN OUT

IN

C2

IN

IN

OUT

APPLIED TO

LEFT

C2 C2 C2

RIGHT

OUT

IN

EXECUTE

Suggested
Refactoring

Actions

OUT MONITORED

IMPLEMENTED

1

Runtime data (logs/traces) are gathered from a
monitoring infrastructure over a running system

We exploit elastic beats in order to:
● Measure the real hw utilization (CPU,

Network..) for each container
● Calculate reliability of the system (by counting

tomcat’s error rate)
● …

We have also conceived and implemented REST APIs
in order to interact with the DB (elasticsearch)

1

20

INFQ 2019 - June 10-11 Exploiting Architecture/Runtime Model-driven Traceability for Performance Improvement

21

Docker Stats - Metricbeat

We gather container’s CPU
utilization, and we exploit it to fill
back the model and discover
performance flaws

INFQ 2019 - June 10-11 Exploiting Architecture/Runtime Model-driven Traceability for Performance Improvement

22

Docker Stats - Metricbeat

Thanks to Disk and Memory
metrics, we can discover
performance issues caused by
disk and memory bottlenecks

INFQ 2019 - June 10-11 Exploiting Architecture/Runtime Model-driven Traceability for Performance Improvement

23

Docker Stats - Metricbeat

We can identify and manage
network bottleneck, by analysing
network traffic.

INFQ 2019 - June 10-11 Exploiting Architecture/Runtime Model-driven Traceability for Performance Improvement

24

Docker Stats - Packetbeat

Packet beat plugin helps us
to obtain data on exchanged
packets

We can measure the average
response time for different
scenarios and different
workloads

We can also measure, for
example, the error rate

INFQ 2019 - June 10-11 Exploiting Architecture/Runtime Model-driven Traceability for Performance Improvement

25

Docker Stats - Filebeat

Filebeat plugin helps us to analyse tomcat’s log errors, and thus measuring, for example, the
reliability/availability of the system

INFQ 2019 - June 10-11 Exploiting Architecture/Runtime Model-driven Traceability for Performance Improvement

System Refactoring (ongoing)

Monitoring
data

JTL

UML
Metamodel

UML
Model

Log
Metamodel

Log
Model

Traceability
Metamodel

UML+MARTE
Metamodel

PADRE

Performance
Antipattern
detection

Model
refactoring

Performance
analysis

Runtime
information

mining

MONITORING
INFRASTRUCTURE

SYSTEM
REFACTORING

Traceability Model

UML
Model

Log
Model

Design-Runtime
correspondences

Traceability links
engine Performance

indices
annotator

UML+MARTE
Model

IN OUT

IN OUT

IN

C2

IN

IN

OUT

APPLIED TO

LEFT

C2 C2 C2

RIGHT

OUT

IN

EXECUTE

Suggested
Refactoring

Actions

OUT MONITORED

IMPLEMENTED

26

A Java Library has been conceived and implemented
(a part of) to “automatically” apply suggested
refactoring actions to the source code.

At the current version, we can generate
● replicas of a microservices
● improve/reduce HW capability of a docker

container
● Modify route in order to control network traffic

8

8

INFQ 2019 - June 10-11 Exploiting Architecture/Runtime Model-driven Traceability for Performance Improvement

System Refactoring - Clone, Remove, Update a container
27

UPDATE Container

CLONE Container

REMOVE Container

Exploiting Architecture/Runtime Model-driven
Traceability for Performance Improvement

Department of Information Engineering, Computer Science and Mathematics

University of L’Aquila, Italy

Vittorio Cortellessa, Daniele Di Pompeo,
Romina Eramo, Michele Tucci

{name.surname}@univaq.it

