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Introduction
2

■ Software architectures are growing in complexity and heterogeneity

■ Model-Driven Engineering (MDE) has shown to be effective in managing complexity by introducing 
automation at a higher level of abstraction

■ Vision: exploiting design-runtime relationships to detect software problems and deduce 
improvement actions (e.g., to meet new (non-)functional requirements)

■ A major challenge is to achieve an efficient integration between design and runtime aspects of 
systems

■ MDE techniques can support the development of complex systems by managing relationships 
between a running system and its architectural models
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Overview of the approach
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■ A Model-driven approach that exploits design/runtime interactions to support designers in :

○ Performance analysis 

○ Architectural refactoring 

■ The process underlying the approach: 

3
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JTL: Janus Transformation Language

Eclipse EMF-based model transformation tool tailored to support bidirectionality and 
change propagation and to keep traceability during software design.

■ Generation of traceability links between heterogeneous 
software/runtime models

■ Storage of links in an explicit way by means of 
traceability models

■ Propagation of feedback obtained from the tracing 
analysis back to the software models

jtl.univaq.it
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   PADRE: Performance Antipatterns Detection and model REfactoring

Eclipse-based framework that enables performance antipatterns detection on UML-MARTE 
software models and model refactoring based on detection results.

■ A performance antipattern describes those bad practices 
in software designing that might introduce performance 
degradation into the system.

■ User-driven refactoring of UML-MARTE software design 
models, driven by performance antipatterns detection

git.io/SeaLabAQ-padre
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The E-Shopper case study
6

■ Open source e-commerce web application
based on microservices

■ 9 application microservices, 8 databases,
4 infrastructure microservices, 42 API endpoints

■ Designed in UML
(Component, Deployment and Sequence Diagrams)

■ Developed using the Spring Cloud framework

■ Deployed on Docker

Available at:
git.io/fh9Z8
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UML design: excerpt of the home page scenario
The E-Shopper case study 7

Static view: COMPONENT DIAGRAM

Deployment view: DEPLOYMENT DIAGRAM

Dynamic view: SEQUENCE DIAGRAM

The approach requires three different design views
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Overall approach
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Runtime information mining
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Runtime data (logs/traces) are gathered from a 
monitoring infrastructure over a running system1

9
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Distributed tracing
Monitoring infrastructure 10
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Method used to profile and monitor applications,
especially those built using a microservices architecture

RAW LOG
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Runtime information mining
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2
11

Logs are automatically 
transformed into Log Models 
conforming to a Log Metamodel

2
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From raw logs to models
Runtime information mining 12

16bb4e7b689f807a : Span

duration: 27000
kind: SERVER
timestamp: 18/11/20,09:52:48..

pop400_ru5 : Log

149c4cef3ac7f19f : 
Trace 4ad2da86e8767b82 : Span

duration: 24000
kind: CLIENT
timestamp: 18/11/20,09:52:48..

http:/categories/category : 
EndPoint

gateway :
Service

A Java transformation automatically generates
Log Models (serialized in XMI) from raw logs

RAW LOG

LOG MODEL
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Design-Runtime traceability with JTL
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Design-Runtime correspondences are defined as 
bidirectional model transformations at metamodel 
level

The JTL Traceability engine generates traceability 
links between UML and Log Models

3

3

4
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Traceability model between the Log and UML models
Design-Runtime traceability with JTL 14
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Log2UML correspondences specification
Design-Runtime traceability with JTL 15

A JTL transformation defined between Log and UML

Map a Trace element in the Log domain to a UseCase element in the UML 
domain. The where clause invokes the execution of the Span2Message 
relation

Map a Log Span to a UML Message inside an Interaction. The where clause 
invokes the execution of the EndPoint2Signature relation

Map a Log EndPoint of a Span to a UML Operation by matching names. The 
UML Operation must be referenced in the signature of the Message

Map a Log Service to a UML Component by matching names
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Performance analysis and refactoring with PADRE
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6
PADRE detects performance antipatterns on the 
UML+MARTE Model

PADRE suggests the most promising refactoring 
actions that shall remove detected antipatterns and 
improve system performance

6

7

7
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Promising refactoring actions - Running Example (1/2)
Performance analysis and refactoring with PADRE 17

■ PADRE suggests to resolve the Pipe and Filter (PaF) performance antipattern on the Items Server 
microservice by applying the Move operation refactoring action

■ The most demanding operation findProduct() of Product Server is moved to a new microservice 
(Items Server 2)

■ The new Items Server 2 microservice is deployed on a new node (the Items Server 2 Docker 
container)

■ After the refactoring, the response time of the Web scenario has been improved by 13.34%, 
whereas the response time of the Warehouse scenario has been improved by 5.04%
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Recap
18

■ We introduced an approach to support the identification and solution of performance problems 
on a running system

■ Monitoring information has been linked to design models by means of the JTL traceability engine

■ Traceability links have been exploited to annotate performance indices on design models

■ PADRE has been used to detect performance antipatterns and provide promising refactoring 
actions

■ The approach has been applied on a case study that was developed and monitored using 
industrial standard technologies

Continue… → 
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Work in progress area
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Runtime information mining (ongoing)
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Runtime data (logs/traces) are gathered from a 
monitoring infrastructure over a running system

We exploit elastic beats in order to:
● Measure the real hw utilization (CPU, 

Network..) for each container
● Calculate reliability of the system (by counting 

tomcat’s error rate)
● …

We have also conceived and implemented REST APIs 
in order to interact with the DB (elasticsearch)

1

20
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21

Docker Stats - Metricbeat 

We gather container’s CPU 
utilization, and we exploit it to fill 
back the model and discover 
performance flaws
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22

Docker Stats - Metricbeat

Thanks to Disk and Memory 
metrics, we can discover 
performance issues caused by 
disk and memory bottlenecks
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23

Docker Stats - Metricbeat

We can identify and manage 
network bottleneck, by analysing 
network traffic.
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24

Docker Stats - Packetbeat

Packet beat plugin helps us 
to obtain data on exchanged 
packets

We can measure the average 
response time for different 
scenarios and different 
workloads

We can also measure, for 
example, the error rate 
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25

Docker Stats - Filebeat

Filebeat plugin helps us to analyse tomcat’s log errors, and thus measuring, for example, the 
reliability/availability of the system
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System Refactoring (ongoing)
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A Java Library has been conceived and implemented 
(a part of) to “automatically” apply suggested 
refactoring actions to the source code.

At the current version, we can generate 
● replicas of a microservices
● improve/reduce HW capability of a docker 

container
● Modify route in order to control network traffic

8

8
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System Refactoring - Clone, Remove, Update a container
27

UPDATE Container

CLONE Container

REMOVE Container
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