Syllabus Attività Formativa

Anno Offerta	2021
Corso di Studio	B35 - PHYSICS
Regolamento Didattico	B35-20-21
Percorso di Studio	CGE - GENERALE
Insegnamento/Modulo	A423183 - COMPUTATIONAL METHODS FOR PHYSISCS - COMPUTATIONAL METHODS FOR
	PHYSISCS
Attività Formativa Integrata	-
Partizione Studenti	-
Periodo Didattico	S2 - Secondo Semestre
Sede	
Anno Corso	1
Settore	FIS/04 - FISICA NUCLEARE E SUBNUCLEARE
Tipo attività Formativa	B - Caratterizzante
Ambito	50340 - Microfisico e della struttura della materia
CFU	8.0
Ore Attività Frontali	76.0
AF_ID	170099

Tipo Testo	Codice Tipo Testo	Num. Max. Caratteri	Obbl.	Testo in Italiano	Testo in Inglese
Lingua	LINGUA_INS	100	Sì	Inglese	English

insegnamento				
Contenuti	CONTENUTI	2000	Sì	An introduction to numerical methods which are used in solving problems in physics, including solutions of differential equations, matrix operations and eigenvalue problems, interpolation and numerical integration, modeling of data and Monte Carlo methods.
Testi di riferimento	TESTI_RIF		Sì	General reference books: Computational Physics - Problem Solving with Computers R. H. Landau, M. J. Páez, and C. C. Bordeianu WILEY Computational Physics P.O.J. Scherer Springer Computational Physics – Lecture Notes Fall 2015 M. Hjorth-Jensen University of Oslo
Obiettivi formativi	OBIETT_FORM	3000	Sì	The student will develop a familiarity with some of the most used algorithms in Physics. Several examples of problems

				in physics will be used in order to demonstrate various numerical methods. The examples span over several fields. The course is project based and through the various projects, normally five, the participants will be exposed to fundamental research problems in these fields. The students will learn to develop and structure codes for studying these
Prerequisiti	PREREQ	2000	Sì	of the capabilities and limits of the various numerical methods, get acquainted with supercomputing facilities and parallel computing and learn to handle scientific projects.
				The basic knowledge of one of the following computing languages: C/C++, Python, Fortran
Metodi didattici	METODI_DID	2000	Sì	The course is offered for one semester and comprises 40 hours of lectures, in addition to 36 hours of laboratory exercises aided by the use of a computer. The course will also include five projects that students will receive feedback on. Attendance is not compulsory but strongly recommended.

Altre informazioni	ALTRO	2000	Sì	
Modalità di verifica	MOD_VER_APPR	3000	Sì	
dell'apprendimento				Specific knowledge will be verified in the
				oral exams with questions starting from
				the projects realized and presented by
				the students.
Programma esteso	PROGR_EST		Sì	
				1) Errors and Uncertainties in
				Computations
				2) Numerical differentiation and
				interpolation .
				3) Non-linear Equations
				4) Numerical Integration
				5) Linear algebra and eigenvalue
				problems
				 Gaussian elimination and LU
				decomposition
				 How to solve linear equations
				 How to obtain the inverse and the
				determinant of a real symmetric matrix
				Iterative solvers
				Cubic spline
				 Tridiagonal matrix decomposition
				 Householder's tridiagonalization
				technique and finding eigenvalues
				basedon this
				 Jacobi's method for finding eigenvalues

		6) Ordinary differential equations
		• Euler's method and improved Euler's
		method, truncation errors
		 Runge Kutta methods, 2nd and 4th
		order, truncation errors
		 Verlet algorithm
		7) Partial differential equations
		Diffusion equation
		 Laplace's and Poisson's Equations
		Wave Equation in two Dimensions
		8) Monte Carlo methods in physics
		 Random walks and Markov chains
		 Metropolis algorithm
		 Applications to statistical physics
		systems
		 Monte Carlo sampling