Appell-type Quadrature Formulas

Maria Italia Gualtieri, Anna Napoli
Dipartimento di Matematica e Informatica, Università della Calabria, 87036 Rende (CS), Italy. email: \{mariaitalia.gualtieri, anna.napoli\}@unical.it.

Abstract

We derive some quadrature formulas by replacing the integrand function with an interpolating umbral polynomial.

Let L be a linear functional on $C^{k}[a, b]$ with $L(1) \neq 0$ and Q a δ-operator on the space P_{n} of polynomials of degree $\leq n$. The umbral interpolant for the function f related to L and Q is the unique polynomial $p_{n}[f]$ of degree $\leq n$ satisfying $$
L\left(Q^{i}[f]\right)=L\left(Q^{i}\left[p_{n}[f]\right]\right), \quad i=0,1, \ldots, n, \quad \forall f \in C^{k}[a, b] \text { such that } Q^{i}[f] \in C^{k}[a, b] .
$$

If Q is the δ-operator of differentiation $Q=\frac{d}{d x}=D$, we obtain the Appell family of umbral interpolants and hence the Appell quadrature formulas $$
\int_{a}^{b} f(x) d x \approx \sum_{i=0}^{n} \frac{L\left(f^{(i)}\right)}{(i+1)!}\left[a_{i+1}^{L}(b)-a_{i+1}^{L}(a)\right], \quad \forall n \in \mathbb{N}
$$ where a_{i}^{L} is an umbral basis defined by the functional L. Related to the interpolant polynomials there are the so-called complementary interpolant polynomials, from which we get other quadrature formulas. Better approximations are achieved by using composite formulas.

For suitable choices of the functional L we obtain special quadrature formulas. In particular we get the Appell-Bernoulli and the Appell-Euler formulas. Finally, we provide estimations of the remainder and some numerical examples.

References

[1] F.A. Costabile, M.I. Gualtieri, A. Napoli, Polynomial sequences: Basic methods, special classes, and computational applications, Walter de Gruyter GmbH \& Co KG, 2023.
[2] F.A. Costabile, M.I. Gualtieri, A. Napoli, Polynomial sequences: elementary basic methods and application hints. A survey, RACSAM. Serie A. Matemáticas, 2019, 113: 3829-3862.
[3] F.A. Costabile, E. Longo, Umbral interpolation, Publ. Inst. Math., 99 (2016), 165-175.
[4] G.C. Rota, B.D. Taylor, The classical umbral calculus, SIAM J. Math. Anal., 25 (1994), 694-711.

