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Model Completeness

Definition

Let T be an L-theory and let A and B be models of T .
T is called model complete if whenever A ⊆ B, we have A 4 B.

Definition

Let T be an L-theory. A model A of T is called existentially closed
model of T if for any extension B of A such that B |= T and for any
quantifier free LA-formula φ(v̄), we have the following:

A |= ∃v̄ φ(v̄) if and only if B |= ∃v̄ φ(v̄ .)
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Model Completeness

Equivalent Conditions of Model Completeness

A theory T is model complete if one of the equivalent conditions below
is satisfied.

Every model of T is existentially closed.

Every embedding between models of T are elementary embedding.

For any model A of T , T ∪ Diag(A) is complete.

For every formula φ(v̄), there is a universal formula ψ(v̄) such that
T |= ∀v̄(φ(v̄)↔ ψ(v̄)).
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Example 1

The theory of dense linear orders without endpoints (DLO) is model
complete. Let A ⊆ B, an existential LA-sentence φ(ā) can only describe
position of an element relative to ai ’s.

...
a1 a2 an−1 an

...
ai+1ai

B
bb b

or or

Example 2

The theory of dense linear orders with endpoints is not model complete.

Consider two models A = ([0, 1], <) and B = ([0, 2], <).

A ⊆ B, B |= ∃v(1 < v); but, A 6|= ∃v(1 < v).

Example 3

The theory of algebraically closed fields is model complete, as every
theory with quantifier elimination.
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Model Companion

Definition

Let T be an L-theory. An L-theory T ∗ is called model companion of T
if the following three conditions are satisfied:

T ∗ is model complete.

Every model of T can be embedded into a model of T ∗.

Every model of T ∗ can be embedded into a model of T .

A theory is called companionable if it has a model companion

If a theory T is companionable, then a model companion T ∗ of T is
unique up to equivalence of theories.
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Inductive Theories

Definition

An L-theory T is called inductive if for any chain (Ai : i ∈ I ) of models
of T (i.e. (I , <)is a linearly ordered set, Ai ⊆ Aj for any i < j), we have⋃

i∈I Ai |= T .

Example

(i) The theories of fields, groups, rings are inductive.

(ii) The theory of dense linear orders with endpoints is not inductive.
Consider the chain of models (Ai : i ≥ 1) where Ai = ([−i , i ], <).
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Theorem

Let T be an inductive theory.

T is inductive if and only if T is a ∀∃-theory.

Every model of T can be extended to an existentially closed model of
T .

If the model companion T ∗ of T exists, then models of T ∗ are
exactly the existentially closed models of T .

T is companionable if and only if the class of existentially closed
models is elementary.
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Positive Examples

1. The model companion of the theory of sets is the theory of infinite sets.

2. The model companion of the theory of equivalence relations is the
theory of equivalence relations with infinitely many infinite classes.

3. The model companion of the theory of linear orders is the theory of
dense linear orders without endpoints.

4. The model companion of the theory of graphs is the theory of random
graph.

5. The model companion of the theory of fields is the theory of
algebraically closed fields.

6. The model companion of the theory of rings without nilpotents exists.
(Lipshitz L., Saracino D).
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When Model Companions Do Not Exist

The theory of groups do not have model companion (Ekloff-Sabbagh).

The theory of commutative rings do not have model companion
(Cherlin).

The theory of cycle free graphs do not have model companion (Naito).

(Z× Z)-TCF does not exists, i.e. existentialy closed Z× Z fields do
not have model companion (Hrushovski).

The theory of dense linear orders with an automorphism has no model
companion (Kikyo-Shelah).

(Z o Z)-TCF does not exists (B.-Kowalski).
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Obstacle Argument

There is a common theme in each of the above proofs.

Definition

Let T be an L-theory and φ(v̄) be an L-formula. An
L-formula ψ(v̄) is called a φ-obstacle if T ∪ {φ(v̄)} ∪ {ψ(v̄)} is
“inconsistent”; that is, if there is no model A of T with a tuple ā ∈ An

such that A |= φ(ā) ∧ ψ(ā).

Example

Let R = (R,+, ·,−, 0, 1, <) be the ordered field of real numbers and let
T = RCF be the theory of real closed fields.

φ(v) : ∃z (v = z2) φ-obstacle ψ(v) : (v < 0)
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Obstacle Argument(Takeuchi, Tanaka and Tsuboi, 2015)

Let T be an inductive L-theory. If there is an existential L-formula φ(v̄)
and a set of L-formulas Σ(v̄) such that:

(i) For any existentially closed model A of T and for all ā ∈ An, we have
A |= Σ(ā)→ A |= φ(ā).

(ii) For any finite subset Σ0(v̄) of Σ(v̄), there is an existentially closed
model B of T and a φ-obstacle ψ(v̄) (depending on Σ0(v̄)) such that
B |= Σ0(b̄) and B |= ψ(b̄) for some b̄ ∈ Bn.

Then, T has no model companion.

Ö. Beyarslan, P. Kowalski Model Companions 15 / 29



Negative Examples

Theorem (Eklof and Sabbagh, 1971)

The theory of groups has no model companion.

HNN-extensions

Two elements of a group G have the same order if and only if they are
conjugate in some group extension H of G .

Σ(v1, v2) : {vn1 6= e, vn2 6= e : n > 0} (infinite order)

φ(v1, v2) : ∃w (v1 · w = w · v2) (conjugate)

Σ0(v1, v2) : {vn1 6= e, vn2 6= e : 0 < n < N}
ψ(v1, v2) : vN1 = e ∧ vN2 6= e is a φ-obstacle for Σ0(v1, v2)
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Negative Examples

Theorem (Cherlin, 1973)

The theory of commutative rings has no model companion.

Lemma

Let R be a commutative ring and let r ∈ R. TFAE:
(i) r is not nilpotent; that is, rn 6= 0 for any n ∈ N.
(ii) There is a commutative ring extension R ′ of R and a nonzero
idempotent element a (i.e., a2 = a) of R ′ such that r divides a in R ′.

Σ(v) : {vn 6= 0 : n > 0}
φ(v) : ∃w1∃w2 [(w2

1 = w1) ∧ (w1 6= 0) ∧ (v · w2 = w1)]

Σ0(v) : {v i 6= 0 : 0 < i < N}
ψ(v) : vN = 0 is a φ-obstacle
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Fields with two commuting automorphisms

Theorem (Hrushovski)

The theory of fields with two commuting automorphisms has no model
companion.

Σ(v) = {(σ(v) = τ(v))∧(σn(v)+σn−1(v)+...+σ(v)+v 6= 0) : n ∈ N}
φ(v) : ∃z(z3 = 1 ∧ z 6= 1 ∧ σ(z) = τ(z) = z2)→
∃w1∃w2 [(σ(w1) = τ(w1) = w1 + v)∧ (w3

2 = w1)∧ (τ(w2) = zσ(w2))]

Σ0(v) = {σ(v) = τ(v)∧σi (v) +σi−1(v) + ...+σ(v) + v 6= 0 : i < N}
ψ(v) : (v + σ(v) + σ2(v) + ...+ σm−1(v) = 0) ∧ (σ(ζ) = τ(ζ) = ζ2)
is a φ-obstacle if m > N is odd.
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PART II
with Piotr Kowalski
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G -fields as first order structures

Given a group G , a G -field is a field K together with an action of G
on K by automorphisms.

A G -field can be considered as a first-order structure
(K ,+, · , (σg )g∈G ), where σg is the automorphism determined by the
action of the element g ∈ G .

It is also enough to name the automorphisms σg for g in some chosen
set of generators.

We define G -field extensions, G -rings, etc. in a natural way.
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Existentially closed G -fields

The theory of G -fields consists of field axioms, plus the axioms stating
that the σg ’s are field automorphisms, and g 7→ σg is a group action.

Note that this theory is inductive, i.e. ∀∃-axiomatized.

Also note that all the σg ’s may act as the identity automorphism,
even though the group G is not trivial.

Nevertheless, if we consider an existentially closed G -field K , then
the action of G on K is faithful.

We will focus our attention on existentially closed G -fields.
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Properties of existentially closed G -fields

Any G -field has an e.c. G -field extension. (A general property of
inductive theories.)

For G = {1}, e.c. G -fields coincide with algebraically closed fields.

For G = Z, e.c. G -fields coincide with transformally (or difference)
closed fields.

Existentially closed G -fields are not necessarily algebraically closed.

The complex field C with the complex conjugation automorphism is
not an e.c. C2-field. (Cn is the cyclic group of n elements.)
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Properties of existentially closed G -fields (Sjögren)

Field theoretic properties

Let K be an e.c. G -field and let F = KG be the fixed field of G .

G acts faithfully on the field K .

Both K and F are perfect.

Both K and F are pseudo algebraically closed (PAC), hence their
absolute Galois groups are projective pro-finite groups.

Galois theoretic properties

If we also assume that G is finitely generated then:

Gal(F alg ∩ K/F ) is the profinite completion Ĝ of G .

The absolute Galois group of F is the universal Frattini cover
˜̂
G of

the profinite completion Ĝ of G .
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Profinite groups as Galois groups: Some definitions

A profinite group is projective, if for every profinite A,B with
α : A→ B onto, and β : G → B, there exists γ : G → A such that
the diagram G

γ

��
β
��

A
α // // B

commutes.

A profinite group is called small if it has only finitely many open
subgroups of index n for each positive integer n.

Frattini Cover: An epimorphism ϕ : H → G of profinite groups is
called a Frattini cover if for all closed H0 < H , if ϕ(H0) = G then
H0 = H.

Universal Frattini Cover is a projective Frattini cover, and it is
unique up to isomorphism.
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Galois Axioms for finite G

Theorem ( Sjögren, and independently by Hoffmann-Kowalski)

Let G be a finite group. A G-field (K ,G ) is existentially closed iff

the fixed field F = KG is PAC,

the action of G is faithful,

the restriction Gal(F )→ Gal(K/F ) = G is a Frattini cover of G.

The above theorem provides an axiomatization for the theory G -TCF
when G is finite. We will call this kind of conditions: Galois axioms.

We may consider Galois axioms for an arbitrary group G , and
existentially closed G -fields satisfy them. However they are usually
not enough to axiomatize G -TCF (which may not even exist!).

Finiteness of G is essential!
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Torsion Abelian Groups

Here is the final version of our theorem about torsion abelian group
actions.

Theorem (B. Kowalski)

Let A be a torsion Abelian group. Then A− TCF exists if and only if for
each prime p, the p primary part of A is either of Prüfer rank one or finite.

The following two steps are conceptually crucial for proving the general
case:

1 the theory Cp∞ − TCF exists;

2 the theory C 2
p∞ − TCF does not exist.
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Results we have been announcing (Final Version)

We presented the following results in several talks (with varying degrees of
probability of correctness) for existence or non-existence of G -TCF. Here is
the final version.

If G = Cp∞ is the Prüfer p-group, then G -TCF exists.

If G = Cp∞1
⊕ Cp∞2

⊕ . . .⊕ Cp∞n where pi ’s are distinct primes, then
G -TCF exists.

If G = C
(ω)
p (direct sum of infinitely many Cp’s), then G -TCF does

not exist.

If G = C2 ⊕ C3 ⊕ C5 ⊕ . . . =: CP direct sum of finite cyclic groups of
prime order, then G -TCF exists.
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G = Cp∞

Theorem

Let Cp∞ be the Prüfer p-group, then Cp∞-TCF exists.

Let Cp∞ be the direct limit of the groups Cpn = 〈σn〉 with the
embeddings given by σn 7→ σpn+1.

It is enough to show that: if (K , σn+1) is a model of Cpn+1-TCF, then
(K , σpn+1) is a model of Cpn -TCF.

We only need to check: F = Fix(σpn+1) is PAC, and
Gal(F )→ Gal(K/F ) = Cpn is a Frattini cover of Cpn .

F is a finite extension of the PAC field Fix(σn+1), hence it is PAC.

Gal(F ) = pZp
∼= Zp is the universal Frattini cover of Cpn .

Hence Cpn -TCF can be understood as a subtheory of Cpn+1-TCF, and
our theory Cp∞-TCF is the increasing union of the theories Cpn -TCF.
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G = Cp∞ ⊕ Cp∞

Note that the above construction can be extended to finite products
of Prüfer groups for non repeating primes. I.e. for distinct primes
p1, p2, . . . , pn, the theory Cp1

∞ ⊕ Cp2
∞ ⊕ . . .⊕ Cpn∞-TCF exists.

But the same method does not provide a model companion in the
case G = Cp∞ ⊕ Cp∞ (below). Actually this model companion does
not exist.

Given a model (K , σ, τ) of Cp2 ⊕ Cp2 , (K , σp, τp) is a Cp ⊕ Cp-field.

Let us set F := Fix(σ, τ), F ′ := Fix(σp, τp). We have

Gal(F ) = F̂2(p), [Gal(F ) : Gal(F ′)] = p2.

By profinite Nielsen-Schreier formula, Gal(F ′) = F̂m(p) where
m = 1 + p2. Hence Gal(F ′) is not a Frattini cover of Cp ⊕ Cp and
Cp ⊕ Cp-TCF does not embed into Cp2 ⊕ Cp2-TCF.
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