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Approximate subgroups

Definition
Let K be an integer. A symmetric subset 1 ∈ A = A−1 of a
group G is a K -approximate subgroup if there is a finite set E of
size K such that A2 ⊆ EA. If K is irrelevant, it is dropped.

• If A is finite, it is |A|-approximate, so the notion is only
interesting for K � |A|.
• K = 1 iff A is a subgroup.
• If K ≤ 2 and A is K -approximate, it is very close to a finite

union of cosets.
• Breuillard, Green and Tao have classified finite

approximate subgroups: asymptotically, up to
commensurability and modulo a finite subgroup, they are
nilprogressions generating a nilpotent subgroup.
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Finite History

Abelian groups
• Freyman 1966, Ruzsa 1994: Complete classification of

sets of small doubling |A2| ≤ K |A| in torsion-free abelian
groups. Weaker than approximate subgroup!
• Gowers 1998, 2001: Used Freyman’s Theorem for a new

proof of Szemerédi’s theorem on arithmetic progressions in
dense sets of integers.
• Green-Ruzsa 2007: Classification of sets of small doubling

in general abelian groups.
• Bourgain-Katz-Tao 2004: Sum-Product Theorem

(a subset of Fp cannot have simultaneous additive and
multiplicative small doubling).
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Finite History

Non-abelian groups
• Helfgott 2008: If A generates SL2(Fp) and |A2| ≤ c|A|1+ε, it

is close to the full group. Weaker than small doubling!
• Tao 2008: Extension to non-commutative groups, definition

of approximate subgroups.
• Tao 2010 (soluble), Safin 2011, Razborov 2014 (free),

Breuillard-Green 2011, 11 & 12 (torsion-free nilpotent,
soluble linear, unitary), Gill-Helfgott 2014 (soluble linear),
Pyber-Szabó 2016 (finite simple Lie), Breuillard-Green-Tao
2011 (linear).

• Hrushovski 2012: Lie Model Theorem.
• Breuillard-Green-Tao 2012: Classification.
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Applications
• Expander graphs,
• Groups of polynomial growth (Gromov’s Theorem),
• Sieve theory,
• Additive combinatorics,
• Differential geometry,
• Random walks.

Tools
• Combinatorics,
• Convex geometry,
• Group theory,
• Representation theory,
• Harmonic analysis,
• Probability theory,
• Algebraic group theory,
• Model theory.
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The Lie Model Theorem

Definition
A structure M is definably amenable if there is a finitely additive
measure µ on the algebra of definable subsets of M which is
not concentrated on finitely many types. If X ⊆ M is definable,
the measure is normalized at X if µ(X ) = 1.

• We do not require that all definable subsets of M have
finite measure (i.e. the value∞ is allowed).
• If M is a group, we usually require the measure to be left

invariant. In particular this is true in this talk.
• We do not a priori require the measure to be

automorphism invariant, or definable.
• We usually do not need the measure to exist on all

definable subsets of M, but just on some suitable
subalgebra.
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Theorem
Let G be definably amenable normalized at a definable
approximate subgroup A ⊆ G. Then there is a type-definable
subgroup N ⊆ A4 normalized by A and of bounded index in 〈A〉.

This was shown first by Hrushovski in the more general context
of near-subgroups (existence of an S1-ideal of negligible sets)
using a stabilizer theorem, then combinatorially by Sanders for
finite approximate subgroups, generalized by Massicot-W. to
the definably amenable case, and fine-tuned by Krupiński-Pillay
and Hrushovski-Krupiński-Pillay with applications to connected
components.
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Corollary (Lie Model Theorem)
Under the same hypotheses, there is a

∨
-definable group H

commensurable with 〈A〉, a normal type-definable subgroup
K ≤ H commensurable with N, a finite-dimensional Lie group
L, and a homomorphism φ : H → L with kernel K and dense
image, such that for any F ⊆ F ′ ⊆ L with F compact and F ′

open there is a definable D ⊆ H with φ−1[F ] ⊆ D ⊆ φ−1[F ′].
Any such D is commensurable with A2.

To deduce the Corollary, just note that 〈A〉/N is a locally
compact group in the logic topology, where proper subsets are
closed iff their pre-image is type-definable. The rest follows
from the theory of locally compact groups.
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And beyond
Massicot-W. have recklessly conjectured that definable
amenability is not needed in the Lie Model Theorem.
Counter-examples were given by Breuillard, Hrushovski, and
Hrushovski-Krupiński-Pillay. However, Hrushovski has shown
that it is true if we just ask for φ to be a quasi-homomorphism.

Theorem
Let A ⊆ G be an approximate subgroup. Then there is a locally
compact group L, a compact normal subset ∆ ⊆ L and a quasi-
homomorphism φ : G→ L with compact error set ∆ such that

1. For any compact C ⊆ L there is n such that φ−1[C] ⊆ An.
2. For any n there is a compact C ⊆ L such that An ⊆ φ−1[C].
3. φ−1[∆] ⊆ A12.
4. If C0,C1 ⊆ L are compact with ∆2C0 ∩∆2C1 = ∅, then

there are disjoint definable D0,D1 ⊆ An for some n with
φ−1[Ci ] ⊆ Di for i = 1,2.
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Metric approximate subgroups
In his thesis under the direction of Hrushovski, Arturo
Rodríguez Fanlo studies metric approximate subgroups, i.e.
symmetric subsets A of some metric group G satisfying
A2 ⊆ EAT , where E is a finite set and T is the closed ball of
infinitesimals. More precisely, rather than the approximate
subgroup condition, he uses metric entropies Nri , where

Nri (X ) = the maximal number of ri -separated points in X

as proposed by Tao, and such that ri+1 ≤ ri/2. If

Nri (A
9) ≤ ki · N9ri (A)

he obtains an S1-ideal of negligible sets making A into a
near-subgroup, giving rise to a type-definable subgroup H;
for ki constant this yields a Lie model theorem for the
approximate subgroup A2.
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The method of Hrushovski and Rodríguez Fanlo use a serious
and non-canonical expansion of the language. Here, we shall
use the Sanders-Massicot-W. approach to directly obtain H.
Instead of the normal ball of infinitesimals we shall consider an
A-invariant type-definable subgroup, and metric entropy will be
replaced by certain left-invariant outer measures.
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T -rough measures
Let G be a group, 1 ∈ T ⊆ G a symmetric subset, and A a
boolean algebra of definable subsets of G such that XT ∈ A
and gX ∈ A for all X ∈ A and g ∈ G.

Definition
An T-rough measure on A is a left invariant outer measure
µ : A → [0,∞] which is finitely subadditive and additive modulo T :

µ(X ∪ Y ) = µ(X ) + µ(Y ) whenever X ,Y ∈ A with X ∩ YT = ∅.

For A-type-definable Y put µ(Y ) = inf{µ(X ) : Y ⊆ X ∈ A}.

Lemma
Let µ be an T -rough measure on A and X0, . . . ,Xn ∈ A. Then

µ
(⋃

i≤n

Xi

)
≥
∑
i≤n

µ(Xi)−
∑

i<j≤n

min
{
µ(Xi ∩ XjT ), µ(XiT ∩ Xj)

}
.

By taking limits, this also holds for A-type-definable Xi .
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Thickness

Definition
A definable symmetric subset X of G is t-thick in Am if for any
t + 1 elements g0, . . . ,gt in Am there is 0 ≤ i 6= j ≤ t with
g−1

i gj ∈ X . A type-definable subset of G is thick in Am if every
definable superset is t-thick for some t < ω.

Note that if B ⊆ G is t-thick in Am, then t left translates of B
cover Am.

Lemma
A finite intersection of subsets of G which are t-thick in Am is
t ′-thick in Am, for some t ′ < ω. An intersection of subsets thick
in Am is still thick.

Proof.
The first assertion is by Ramsey’s Theorem. The second one
follows.
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Lemma
Let µ be a T -rough measure on A, and suppose A ∈ A with
0 < µ(A2) <∞. Let t > 0 be an integer and B ⊆ A definable
with µ(B) ≥ 2µ(A2)/t . Put

S(B) =
{

g ∈ A2 : min{µ(B ∩ gBT ), µ(gB ∩ BT )} ≥ 2µ(A2)

t2

}
.

Then S(B) is t-thick in A.

Note that B ∩ gBT or gB ∩ BT non-empty implies g ∈ BTB−1.

Proof.
Otherwise find (gn : n ≤ t) in X such that gn /∈

⋃
k<n gkS for all

n ≤ t . By the Lemma,

µ(A2) ≥ µ
(⋃

i≤t

giB
)
> (t + 1)

2µ(A2)

t
− (t + 1)t

2
2µ(A2)

t2

=
t + 1

t
µ(A2) > µ(A2), a contradiction.
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T -rough definable amenability

Fix A ∈ A. Let T =
⋂

i<ω Ti be a type-definable A-invariant
subgroup, where each Ti is symmetric, T 2

i+1 ⊆ Ti and T A
i+1 ⊆ Ti

for all i < ω.
Suppose that XTi ∈ A for all i < ω and X ∈ A.

Definition
A is T-rough definably amenable if for all i < ω there is a left
G-invariant Ti -rough measure µi on A normalised at A.
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Theorem
Let A ⊆ G be T-rough definably amenable, and m,m′, (Ki)i<ω

integers with µi(A2m+m′
) ≤ Ki . Suppose B =

⋂
i<ω Bi ⊆ Am is

type-definable and thick in A. Then there is a type-definable
subset S ⊆ B2 ⊆ A2m thick in Am such that Sm′ ⊆ B4T .

Consider the following definable conditions P t
n,i(X ) on definable

subsets X ⊆ Am, for n, i , t < ω:

• P t
0,i(X ) if X 6= ∅.

• P t
n+1,i(X ) if

St
n,i(X ) =

{
g ∈ A2m : P t2

n,i(X ∩ gXTi) and P t2

n,i(X ∩ g−1XTi)
}

is t-thick in Am.

Lemma
The P t

n,i(X ) and St
n,i(X ) are monotone in n, t and X.
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By the Lemma and induction on n we have P t
n,i(X ) whenever

X ⊆ Am with µi(X ) ≥ 2Ki/t . But µi(Bi) > 0, as any finitely many
translates of any Bi cover A. So for ti ≥ 2Ki/µi(Bi) we have
P ti

n,i(Bi) for all n < ω. Thus S0 =
⋂

i,n<ω Sti
n,i(Bi) is thick in Am.

Choose εi < µi(Bi)/m′Ki , and start a sequences (Xi,n)n<ω with
Xi,0 = Bi for all i < ω. Then X0 =

⋂
i<ω Xi,0 = B.

If there are minimal i0 < ω, as well as k0 < m′ and g0 ∈ S0 with

µi0((Xi0,0 ∩ g0Xi0,0Ti0)T k0
i0

Bi0T k0
i0
∩ A2m+m′

)

≤ (1− εi0)µi0(Xi0,0T k0
i0

Bi0T k0
i0
∩ A2m+m′

),

define Xi,1 = Xi,0 ∩ g0Xi,0Ti , so X1 =
⋂

i<ω Xi,1 = X0 ∩ g0X0T ,
and iterate. Otherwise, stop.

Note that P t2n
i

n,i (Xi,n) holds for all i ,n < ω, and limn→∞ in =∞.
Put X =

⋂
n<ω Xn, and S =

⋂
n<ω Sn, a type-definable subset of

B2T ∩ A2m thick in Am.
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If n� 0 then in > i , and for any g ∈ S and k < m′ we have

µi(Xi,nT k
i BiT k

i ∩ gXi,nT k+1
i BiT k

i ∩ A2m+m′
)

≥ µi((Xi,n ∩ gXi,nTi)T k
i BiT k

i ∩ A2m+m′
)

≥ (1− εi)µi(Xi,nT k
i BiT k

i ∩ A2m+m′
), whence

µi((Xi,nT k
i BiT k

i \ gXi,nT k+1
i BiT k+1

i ) ∩ A2m+m′
)

≤ µi(Xi,nT k
i BiT k

i ∩A2m+m′
)−µi(Xi,nT k

i BiT k
i ∩gXi,nT k+1

i BiT k
i ∩A2m+m′

)

≤ (1− (1− εi))µi(Xi,nT k
i BiT k

i ∩ A2m+m′
) ≤ εi Ki .

If g0, . . . ,gm′−1 ∈ S, write g<` := g0 · · · g`−1 for each ` < m′. So

µi((Xi,nBi \ g<m′Xi,nT m′

i BiT m′

i ) ∩ A2m)

≤ µi

(⋃
k<m′ g<k (Xi,nT k

i BiT k
i \ gkXi,nT k+1

i BiT k+1
i ) ∩ A2m

)
≤
∑

k<m′µi((Xi,nT k
i BiT k

i \ gkXi,nT k+1
i BiT k+1

i ) ∩ A2m+m′
)

≤ m′ εi Ki < µi(Bi) ≤ µi(Xi,nBi ∩ A2m).
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In particular, Xi,nBi ∩ g<m′Xi,nT m′

i BiT m′

i 6= ∅.
By compactness, XB ∩ g<m′XBT 6= ∅ (since T is A-invariant).
Thus Sm′ ⊆ B4T ⊆ A4mT .

Theorem
Let A ⊆ G be T-rough definably amenable and suppose that
µj(Am) <∞ for all j ,m < ω. Then there is N E 〈AT 〉
type-definable of bounded index such that T ⊆ N ⊆ A4T .

Proof.
We iterate the Theorem with m′ = 8, putting

A0 := A and An+1 := S ⊆ A2
n ⊆ A2n

for B := An.

Clearly, H =
⋂

n<ω A4
nT is a type-definable subgroup in A4T

thick in AmT for all m < ω. Thus the index of H in 〈AT 〉 is
bounded.
It follows that the intersection of all 〈AT 〉-conjugates of H is a
bounded intersection, whence a type-definable normal
subgroup N in 〈AT 〉 of bounded index.
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Definition
A ⊆ G is a T-rough K -approximate subgroup if A2 ⊆ EAT for
some finite E of size K .

Lemma (Ruzsa)
Let A ⊆ G be T-rough definably amenable, and suppose
µi(A4) < K for all i . Then A2 is a T -rough K 2-approximate
subgroup.

Lemma
Let A ⊆ G be a T-rough definably amenable T -rough
approximate subgroup with µi(AT ) <∞ for all i < ω. Then
µi(Am) <∞ for all i ,m < ω.

Corollary
Let A ⊆ G be T-rough definably amenable T -rough
approximate subgroup with µi(AT ) <∞ for all i < ω. Then 〈A〉
has a Lie model.
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Thank you !
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