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What is the project?

Let K = (K ,+, ·, v , · · · ) be an expansion of a valued field. Under
additional assumptions, we want to study definable and interpretable
groups and fields in K.

What is meant here by “Interpretable”?
A group (G; ·) is interpretable in K if there are
(i) definable set X ⊆ K n and a definable equivalence relation E on X ,
and
(ii) a function M : (X/E)2 → X/E such that
(G; ·) ≃ (X/E ;M), and the preimage under π of Graph(M) is a
definable subset of X 3.
An interpretable field is similarly defined.
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The plan of this tutorial

Talk I. 3 settings and 4 distinguished sorts-the Closed Ball Property

Talk II. Dimension, rank and the Independent Neighborhood Property

Talk III. Infinitesimal subgroups of an interpretable group
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Valued Fields

Definition
A (non-archimedean) valuation on a field K is a map v : K → Γ ∪ {∞},
for Γ an ordered abelian group, satisfying:

1. v(x) = ∞ ⇔ x = 0.
2. v(x · y) = v(x) + v(y) (a homomorphism : K× → (Γ,+)).
3. v(x + y) ⩾ min{v(x), v(y)}

Notation
For γ ∈ Γ, a ∈ K ,
B>γ(a) = {x ∈ K : v(x − a) > γ} B⩾γ(a) = {x ∈ K : v(x − a) ⩾ γ}.

O = B⩾0 the valuation ring
m = B>0 ⊆ O the maximal ideal
k = O/m the residue field
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Some basic examples of valued fields

• K = k((t)) the field of Laurent series of some field k
Let v(

∑
k∈Z ak tk ) = min{k : ak ̸= 0}. Here Γ = Z, and k = k .

• (p-adic valuation) Consider Q, fix p prime, and define v(a/b) = n if
a/b = pn(a′/b′) with gcd(a′,b′) = 1. Here Γ = Z and k = Fp,
The valuation v endows Q with a metric d(x , y) = p−v(x−y) ∈ R.

• The p-adic field, Qp = the completion of Q with respect to the p-adic
metric. The elements can be written as∑

n⩾m

akpk ,

with m ∈ Z, 0 ⩽ ak ⩽ p − 1, and addition with “carry over”.
We have Γ = Z and k = Fp.

• Finite extensions of Qp admit valuations extending the p-adic one.
Here Γ ∼= Z, k = finite extension of Fp.
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The 3 main settings, with logic

We start with K = (K ; +, ·, v) a valued field in the signature of +, ·, v ,
equivalently K = (K ; +, ·,O), where O the valuation ring.

• pCF, p-adically closed fields.
K is elementarily equivalent to finite extensions of Qp.
We shall also consider “P-minimal expansions” (to be defined).

• RCVF, Real closed valued fields.
K = (K ; +, ·, <,O), where K is a real closed field and O ⊆ K a
nontrivial convex (valuation) subring (containing 1!).
We shall also consider “T -convex, power bounded expansions” (t.b.d).

• ACVF0,0, algebraically closed valued fields.
K = (K ; +, ·,O) be an algebraically closed field, char(K ) = 0, O a
nontrivial valuation ring, char(k) = 0.
We shall also consider “V-minimal expansions” (not to be defined....).
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P-minimal expansions of p-adically closed fields

Fix prime p, and assume that K is a p-adically closed field.

Main properties
• The residue field k is a finite extension of Fp.

• The ordered value group Γ (with the induced structure) is ≡ to
(Z;<,+), namely a Z-group. (Note, closed balls in K are open balls).

• (Macintyre) Every definable subset of K is a boolean combination of
singletons, balls and cosets of Pn = {x ∈ K ∗ : ∃y ∈ K yn = x}.

• (v. d. Dries) K has definable Skolem function (for the home sort K !).

Definition (Haskell-Macpherson)
An expansion K = (K ; +, ·, v , · · · ) is P-minimal if for every K′ ≡ K,
(i) ΓK ′ is a Z-group,
(ii) every definable subset of K ′ is definable in the field language.

v.d.Dries-Haskell-Macpherson: Th(Qp,Lan) is P-minimal.
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The closed ball property-the P-minimal case

Theorem
Assume that K is P-minimal.
If X ⊆ K is definable and intersects infinitely many closed 0-balls then
X contains a closed ball of radius < 0.

In fact, for every k ∈ N, X contains a ball of radius < −k .

A preliminary observation
Every ball with (valuative) radius in Z intersects only finitely many
closed 0-balls. Indeed, this follows directly from the fact that the
residue field is finite.
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Proof of closed ball prop. (thanks to D. Macpherson)

(For simplicity of presentation, assume saturation)
▶ Using P-minimality (and +-translation), we may assume

X = {x ∈ K : γ1 < v(x) < γ2 and λx ∈ Pn}, for γ1, γ2 ∈ Γ ∪ {±∞},
and λ ∈ K , the intersection of an annulus with a coset of P∗

n .
▶ By the observation, γ1 < Z. Hence, there exists x0 ∈ X with

v(x0) = γ0 < Z. So, γ0 < γ2.
▶ We claim that B⩾γ0/2(x0) ⊆ X :
▶ If x ∈ B⩾γ0/2(x0) then γ1 < v(x) = v(x0) < γ2.

Enough to see x−1x0 ∈ P∗
n (hence also λx ∈ P∗

n):
▶ Let f (Y ) = Y n − x−1x0 ∈ O[Y ].
▶ v(f (1)) = v(1 − x−1x0) = v((x − x0)/x) = v(x − x0)− v(x) =

−γ0/2 > N.
▶ v(f ′(1)) = v(n) ∈ N, so v(f (1)) > 2v(f ′(1)).
▶ By Hensel’s lemma, f (Y ) has a root in O, hence x−1x0 ∈ Pn.
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T -convex real closed valued fields

Let K be real closed, M = (K ;<,+, ·, · · · ) o-minimal, polynomially
bounded (or “power bounded”).
Let O ⫋ K be a convex ring, closed under all ∅-definable continuous
functions f : O → K (T -convex). In particular, O is a valuation ring.

Theorem (v.d. Dries-Lewenberg, v.d. Dries)
The expansion K = (K ;<,+, ·,O, · · · , ) is a real closed valued field.

• (no need for “power bounded”) (K :<, · · · ) is weakly o-minimal and
has definable Skolem functions, after naming a >> O.

• The residue field k, with induced structure, is an o-minimal structure,
elementarily equivalent to M.

• The value group Γ, with the induced structure, is an ordered vector
space, over “the field of powers”.

• (Tyne) Every definable subset of K is a boolean combination of balls
and intervals.
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The closed balls property-the T-convex case

Theorem
Assume X ⊆ K is a definable set, which intersects infinitely many
closed balls of radius 0.
Then X contains at least one closed ball of radius < 0.
Note that this fails for open balls.

Proof:
▶ By weak o-minimality, X is a finite union of convex subsets of K so

we may assume that X is convex.
▶ Balls are convex sets. Hence, X must contain infinitely many

closed 0-balls.
▶ (Because balls are closed) There are x1 < x2 in X with

v(x1 − x2) = γ < 0.
▶ The ball B⩾γ/2(

x1+x2
2 ) is contained in the interval (x1, x2) ⊆ X .
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C-minimal expansions of ACVF0.

Definition
An expansion K = (K ; +, ·, v · · · ) of algebraically closed valued field of
char 0 is C-minimal if in every K′ ≡ K, every definable subset of K ′ is
quantifier-free definable in the valued field language.

Theorems
1. (Robinson) Algebraically closed valued fields are C-minimal.
2. (Haskell-Macpherson) If K is C-minimal then

• Γ, with induced structure, is an ordered divisible abelian group
(o-minimal).

• The residue field k, with induces structure, is a strongly minimal
expansion of an algebraically closed field.
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The closed ball property, the C-minimal case

Theorem
If K is C-minimal and X ⊆ K definable and intersects infinitely many
closed 0-balls then X contains a closed ball of radius γ < 0.

Below, a maximal sub-ball of X is a ball B ⊆ X which is not properly
contained in any other ball in X .

Conclusion in all settings from the closed ball property
If X ⊆ K is definable then there are at most finitely many maximal
closed sub-balls of X of every fixed radius in X .
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Elimination of imaginaries

The “correct” model theoretic machinery isolates some basic sorts in
Meq and reduces analysis of all definable quotients to these sorts.

Sometimes these sorts are not needed (ACF, o-minimal expansions of
groups, DCF0)

Some theorems on elimination of imaginaries in valued fields
• (Haskell-Hrushovski-Macpherson) Algebraically closed valued fields
eliminate imaginaries when we add “geometric sorts”.

• (Mellor) Real closed valued fields eliminate imaginaries with the
“geometric sorts”.

• (Hrushovski, Martin, Rideau-Kikuchi) p-adically closed fields
eliminate imaginaries in appropriate language.
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The 4 distinguished sorts

Difficulties in applications of the EI results
The geometric sorts are complex, of unbounded dimension, it is not
simple to understand definable quotients through them.

A lazy way out
Instead, we drop the hope to fully analyze interpretable groups and
fields via the special sorts. We focus our attention on 4 “one
dimensional distinguished sorts” , and analyze groups and fields
locally through these.

The 4 distinguished sorts
• K
• O/m = k, open 0-balls.
• K/O, the closed 0-balls.
• K ∗/O∗ = Γ.
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Reduction to the 4 distinguished sorts

Theorem: Reduction to the distinguished sorts
Let K = (K ; +, ·, · · · ) be an ω-saturated
(i) C-minimal expansion of ACVF, or
(ii) T -convex expansion of RCVF, or
(iii) P-minimal expansion of p-adically closed field.

If X/E is a definable infinite quotient, X ⊆ K n, then there exists an
infinite definable Y ⊆ X/E , and a definable finite-to-finite
correspondence between Y and a subset of K , k, K/O, or Γ.

Proof
Step 1: (totally general) There exists a finite-to-finite definable
correspondence between an infinite subsets of X/E and K/E1 for
some definable equivalence relation E1 on K :
This is discrete mathematics (no connection to fields). Exercise.
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Step 2

Note: all value groups have Definable Choice
We have X/E , for X ⊆ K .
▶ For each E-class C ∈ X/E , let SC,max be the set of all maximal

balls (open, closed, or singletons) inside C. It is definable.
▶ Using Definable Choice, let γC ∈ Γ ∪ {∞} be one of the radii of

balls in SC,max , We may assume that for all C ∈ X/E , all
b ∈ Smax ,C have the same radius γ(C).

▶ Case 1 The map C 7→ γ(C) is finite-to-one. Then X/E ∼ Γ.
▶ Case 2 There is γ0 ∈ Γ with γ−1(γ0) ⊆ X/E infinite. This is the

new X/E . Now, all maximal balls in all classes have the same
radius γ0.
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Proof continues

So we now assume that for every class C ∈ X/E , every maximal ball
has the same radius γ0.
▶ If γ0 = ∞ then every C is a union of isolated points so finite.

X/E ∼ K .
▶ So assume γ0 ∈ Γ. By the closed ball property, each C intersects

at most finitely many closed balls of radius γ0.
▶ So, we have a 1-finite map from X/E into “ the closed balls of

radius γ0” ∼ K/O.
▶ Case 2.1 Each closed ball of radius γ0 intersects at most finitely

many C’s. In this case X/E ∼ X/O.
▶ Case 2.2 Some closed ball b0 of radius γ0 intersects ∞-many

classes C. WMA all balls in Smax ,C are contained in b0, so balls in
Smax ,C must be open....... Working in B⩾γ0/B>γ0 ∼ k, we get
X/E ∼ k.
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Dimension and rank

In all settings (ACVF, RCVF, pCF), in the home sort K , acl satisfies
Steinitz Exchange and ∃∞ is eliminated, thus these are geometric
structures-we have a good notion of dimension with additivity:

∀ā, b̄ ∈ K , and A, dim(ā, b̄/A) = dim(ā/b̄A) + dim(b̄/A).

However, what is a good dimension for definable quotients?

Option 1
(Gagelman 2004): If D a geometric structure then one can extend
dimension to Deq and maintain additivity.
Problem: The sorts Γ, K/O and k are all 0-dimensional (because the
equivalence classes are 1-dimensional), so we “lose them”.

19



Option 2: dp-rank (Usvyatsov, 2009)

The notion of dp-rk is defined for any tuple and definable set in Meq.
(we omit the definition). We have: dp-rk(M) < ∞ iff Th(M) is NIP.

Basic properties
(1) dp-rk(X ) = 0 iff X is finite.
(2) If f : X → Y is definable then dp-rk(Y ) ⩽ dp-rk(X ).
(3) dp-rk(X × Y ) = dp-rk(X ) + dp-rk(Y ).
(4)dp-rk(X ∪ Y ) = max{dp-rk(X ), dp-rk(Y )}.
(5) (Subadditivity)(Kaplan-Onshuus-Usvyatsov 2011)
dp-rk(a,b/A) ⩽ dp-rk(a/bA) + dp-rk(b/A)

The rank of the distinguished sorts is 1
• In all of our cases, dp-rk(K ) = 1 (K is dp-minimal).
• dp-rk(K/O) = dp-rk(Γ) = 1 (infinite image of an infinite subset of K ).
• If k infinite then dp-rk(k) = 1.
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An important example K/O
Take K = (K ;<,+, ·,O) an RCVF.
▶ Since O is a convex subgroup, the sort (K/O; +, <) is a linearly

ordered, weakly o-minimal (non-pure!) group.
▶ Fix α ∈ m (v(α) > 0). For x − y ∈ O, α · x − α · y ∈ O,

Thus x 7→ α · x descends to an endomorphism α∗ : K/O → K/O.
▶ ker(α∗) = {x +O : α · x ∈ O} = {x +O : v(x) ⩾ −v(α)}, so α∗ is

locally constant. ⇒ K/O is not a geometric structure-No
Exchange:Take a ∈ K generic over α, b = α∗(a). Then
b ∈ acl(a, α) \ acl(α) but a /∈ acl(b, α).

Although there is no Exchange , dp-rk(b̄/A) = dimacl(b̄/A) !!!

dimacl(a1,a2, . . . ,an) = maximal size of an acl-independent sub-tuple.

Fact: dp-rank and algebraic closure
In all distinguished sorts in our settings, dp-rk = dimacl
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Simon-Walsberg uniformities (2015)

Definition
Let D be a dp-minimal expansion of a definable Hausdorff uniformity
(e.g. topological group). We call it a an SW-uniformity if

1. D has no isolated points.
2. Every infinite definable X ⊆ D has non-empty interior.

Examples
• O-minimal and weakly o-minimal structures (dense linear order).
• (Jahnke-Simon-Walsberg, Johnson) Every dp-minimal expansion of
(nontrivially) valued field is an sw uniformity.
• in pCF, (Γ, <,+) and K/O are not SW uniformities!

Important properties of SW uniformities (Simon-Walsberg)
(1) dp-rk = dimacl . (2) Definable functions are continuous at generic
points. (3) dp-rk Frontier(X ) < dp-rk(X ).
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The Independent Neighborhood property, version 1

A topological version
Let D be an SW uniformity. Let X ⊆ Dn be a definable set (over any
parameters), a ∈ Int(X ), and A any parameter set.
Then there exists C ⊇ A and a C-definable open U ⊆ X , a ∈ U, such
that dp-rk(a/C) = dp-rk(a/A). Moreover, U = U1 × · · ·Un ⊆ Dn.

Example

M o-minimal, X ⊆ M2, ⟨a1,a2⟩ ∈ Int(X ). Then we can find open
intervals (b1,b2) ∋ a1, (b3,b4) ∋ a2, such that (b1,b2)× (b3,b4) ⊆ X
and dim(a/b1 · · · b4) = dim(a/A).
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One application

A simple application
Assume that D is an SW uniformity Y ⊆ Dn definable and f : Y → Z
definable finite-to-one, all defined over A.
Then, for every generic x0 ∈ Y over A, there exists C ⊇ A, such that
dp-rk(x0/C) = dp-rk(x0/A), and a C-definable open U ∋ x0 such that
f ↾ U ∩ Y is injective.

Proof First choose any open X ∋ x0 such that f−1(f (x0)) ∩ X = {x0}.
Then apply the IN property to replace X by U ⊆ X .
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The Independent Neighborhood property, version 2

The case of Z and Qp/Zp

What to do with distinguished sorts that are not SW uniformities?
E.g. Γ and K/O in the p-adic case: the natural topology on Z and
Qp/Zp is discrete.

a non-topological version, for dp-rk(D) = 1
Property (IN) For A,B any parameter sets, X ⊆ Dn B-definable, and
a ∈ X , such that dp-rk(a/B) = n = dp-rk(a/A).
Then there exists C ⊇ A and a C-definable U ⊆ X such that a ∈ U and
dp-rk(a/C) = n. Moreover, U = U1 × · · · × Un ⊆ Dn.

Examples of Property (IN)
• Property (IN) fails for, say, ACF.
• Property (IN) holds for SW uniformities, and for Γ and K/O in pCF.
• Question/Conjecture: Is (IN) true in every distal (dp-minimal)
structure?
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An application of property (IN)

Theorem (A filter base)
Assume that dp-rk(D) = 1 satisfies (IN), and a ∈ Dn, with
dp-rk(a/∅) = n. Consider the global type:

ν(a) = {X ⊆ Dn definable over A ⊆ M : a ∈ X , and dp-rk(a/A) = n}.

Then (1) Dn ∈ ν(a). (2) For every X ,Y ∈ ν(a) there is Z ∈ ν(a) such
that Z ⊆ X ∩ Y . In particular, ν(a) is consistent of rank n.

Proof
▶ Assume X ,Y are definable over A,B, respectively.
▶ By (IN), there are C ⊃ A, and Y ′ ⊆ Y which is C-definable, a ∈ Y ′,

such that dp-rk(a/C) = n.
▶ Let Z := X ∩ Y ′ ⊆ X ∩ Y . Then Z is definable over C, a ∈ Z , and

dp-rk(a/C) = n, so Z ∈ ν(a).
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Summary so far

Which distinguished sorts are SW uniformities?
• In the ACVF case, K , K/O and Γ are SW uniformities.
(k is stable, so no definable Hausdorff topology).

• In the RCVF case, K , K/O, Γ, and k are SW uniformities.

• in the pCF case, only K is an SW uniformity. K/O and Γ are not.

Which distinguished sorts satisfy property (IN)?
• All SW uniformities.

• Proposition: In the pCF case, K/O and Γ satisfy (IN)
(k is finite)

• In the ACVF case, k does not satisfy (IN).
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Interpretable groups

Let G be an interpretable group in one of our settings.

We saw that there is a definable correspondence between an infinite
X ⊆ G and one of the distinguished sorts D = K ,K/O,k, Γ.

With a bit more work, there is a finite-to-one map f : X ⊆ G → Dn.

Example of dp-rk(G) = 1
• G = K/O. In the ACVF and RCVF, G is a divisible abelian group.

In Qp: G = Qp/Zp = Z(p∞) is the Prüfer group .

• (G = RV )
1 → k∗ −→ RV = K ∗/(1 + m) −→ Γ → 0. It contains a copy of k∗.
When k is finite (pCF), then the angular component is definable, and
then the set {x(1 + m) ∈ RV : ac(x) = 1} in bijection with Γ.

• G = (K/m,+). It is dp-minimal and contains a copy of (k,+).
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Another example

• Let G = (K ,+)× (K/O,+).

• dp-rk(G) = 2.

• G has definable sets in correspondence (even bijection) with both K
and K/O.

• Clearly, every K × {y} is such a set. Also, the graph of π : K → K/O

is a definable subset (subgroup) of G in bijection with K .

• The only subsets of G in finite-to-finite correspondence (bijection)
with K/O are of the form {a} × K/O.
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Interpretable groups-the main theorem

Main theorem
Let K = (K ; +, ·, v , · · · ) be either
(i) a (V-minimal expansion of) ACVF0,0, or
(ii) a polynomially (power) bounded T-convex expansion of RCVF, or
(iii) a pCF.

Let G be an infinite group interpretable in K.
Then, after possibly replacing G with G/H for H finite normal, there
exists an infinite type-definable subgroup ν ⊆ G such that:

1. ν is definably isomorphic to a type definable group in K or in k, or
2. ν is definably isomorphic to a type definable subgroup of (Γn,+),

or a definable subgroup of ((K/O)n,+).
Moreover, in all cases, ν has unbounded exponent.
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Dp-minimal groups

Corollary
If G as above, and dp-rk(G) = 1 then G is abelian-by-finite.

Proof
▶ By Simon, G contains a definable abelian normal H ⊆ G such that

G/H has bounded exponent.
▶ By Theorem, if G/H is infinite then it contains a subgroup of

unbounded exponent, hence G/H must be finite.

Simonetta’s counter-example
There is a dp-minimal group in ACVFp,p that is solvable of step 2 (so
not abelian-by-finite).
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Previous (partial?) results, on groups and fields in
valued fields

▶ Pillay on definable groups and fields in Qp,
▶ Hrushovski-Pillay on definable groups in local fields,
▶ Hrushovski-Rideau-Kikuchi on metastable groups and

interpretable fields in ACVF,
▶ Bays-Pe, on definable fields in RCVF
▶ Acosta on 1-dim definable groups in Qp,
▶ Johnson-Yao on (non) definably compact groups in Qp,
▶ Johnson on interpretable groups in Qp,
▶ Onshuus-Vacaria groups in Presburger arithmetic.
▶ Gismatulin, Halupczock and Macpherson on definably simple

groups in valued fields (in preperation).
▶ Cassani, on interpretability of trees in Qp (in preparation)
▶ Alouf, Fornasiero, Gonzales, interpretable fields of dimension > 0

in Qp (in preparation)
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Back to the Theorem: Strong internality to a sort D

We have an interpretable group G in K |= RCVF, ACVF or pCF.

Definition
A definable X ⊆ G is called strongly internal to a set D if there is an
injective f : X → Dn. If X has maximal dp-rank as such, we call it
D-critical.
If f : X → Dn is finite-to-one we call X almost strongly internal to D.
And if it has maximal dp-rank as such, and minimal finite fibers then
we call it almost D-critical.

Warning
If X ⊆ G is D-critical it does not mean that it is also almost D-critical.
(Example, at the end if there is time)

So far, we showed:
There exists an infinite definable X ⊆ G, which is almost strongly
internal to D = K ,K/O,k or Γ.
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One simple case

The strongly minimal case
Let K be an ACVF.
Assume that there exists an infinite subset of G that is almost strongly
internal to the residue field k. Then there exists a definable infinite
normal subgroup H ⊴ G and a finite H0 ⊴ H such that H/H0 is
definably isomoprhic to a k-algebraic group.

The proof is some local version of Zil’ber’s indecomposability theorem.

Example
G = (K/m,+). Then G ⊇ H = O/m ∼= k, and H is algebraic.

Note: The quotient G/H is again of rank 1, and G/H ∼= K/O.
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The unstable case: ¬ (K |= ACVF and D = k)

Assume that either K |= RCVF, or K |= pCF, or K |= ACVF, but D ̸= k.

Main Lemma (almost true)
Assume that X ,Y ⊆ G are A-definable, infinite and almost D-critical,
and let (a,b) ∈ X × Y be generic, namely
(dp-rk(a,b/A) = dp-rk(X ) + dp-rk(Y ) = 2dp-rk(X )).

Then, there are X1 ⊆ X ,Y1 ⊆ Y , (a,b) ∈ X1 × Y1, definable over
B ⊇ A, such that dp-rk(a,b/B) = dp-rk(a,b/A), such that

X1 · Y1 ⊆ X · b and X1 · Y1 ⊆ a · Y .

Warning
In the above dp-rk(X1 · Y1) = dp-rk(X ) = dp-rk(Y ) but we are not
claiming that dp-rk(X · Y ) = dp-rk(X ) = dp-rk(Y )! This is false in
general.
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Example-in any of the settings

Let π : K → K/O, and G = K × K/O, dp-rk(G) = 2.

X = {(x , π(x)) ∈ G : x ∈ K} Y = {(x ,−π(x)) ∈ G : x ∈ K}.

Each has rank 1, and is in local bijection with K , so X ,Y are strongly
internal to K . They are also of maximal rank in G as such, so K -critical
in G.
For a = (x , π(x)) ∈ X and b = (y ,−π(y)) ∈ Y , take

X1 = (x + O)× {π(x)} ⊆ X and Y1 = (y + O)× {−π(y)} ⊆ Y .

These are cosets of the same subgroup of G, so
X1 + Y1 = (x + y + O)× π(x) + π(y) ⊆ X + b.
So, dp-rk(X1 + Y1) = 1.
However, X + Y = G, so dp-rk(X + Y ) = 2.

36



Interpretable groups (cont)

From finite-to-one to injective
Assume that X ⊆ G is almost D-critical, witnessed by f : X → Dn (so f
has smallest possible fibers). Then there is a finite normal subgroup
H ⊆ G, and X ′ ⊆ X with dp-rk(X ′) = dp-rk(X ), such that f : X ′ → Dn

factors through π : G → G/H.

Proof (a-la Hrushovski’s thesis). For (a,b) ∈ X 2 generic, get
X1,Y1 ⊆ X as in main lemma. Then X1 · Y1 ⊆ X · b. Let
(a1,b1) ∈ X1 × Y1 generic over (a,b).
Consider x 7→ (f (x), f (xb1b−1)) ∈ D2n. It cannot have smaller fibers
that f , thus... (here [x ]f = f−1(f (x))).

[a1]f · b1 = [a1]f · [b1]f = a · [b1]f .

Finish using the following fact on groups
If A,B ⊆ G and A · b = A · B = a · B then A and B are right and left
cosets of the same subgroup H.
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The infinitesimal vicinity

After replacing G with G/H for H finite and normal

We assume now that there exists an infinite definable X ⊆ G which
can be injected into Dm, for some distinguished sort D, all over some
A. We take it of maximal rank, namely D-critical. We fix a ∈ X with
dp-rk(a/A) = dp-rk(X ) =: n.

Definition: The infinitesimal vicinity of a in X
We consider the global partial type:

νX (a) = {Y ⊆ X definable over B ⊆ M : a ∈ Y , dp-rk(a/B) = n}.

By the “filter base” result, it is consistent and dp-rk(νX (a)) = dp-rk(X ).

▶ When D is o-minimal then νX (a) is logically equivalent to the
intersection of all K-definable open neighborhoods of a in X .

▶ When D = Γ is a Z-group, and a ∈ X = n · Γ, then νX (a) is all
K-definable “long” intervals containing a in nΓ. Well, not really.
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The main properties of νX (a)

Using the Main Lemma, we have:

Theorem
For X ⊆ G, a D-critical set, and a ∈ X generic.

1. The set νX (a) is a coset of a type def. subgroup νX (a)a−1 ⊆ G.
2. This subgroup does not depend on choice of a and the D-critical

X , denote it by νD ⊆ G, the type-definable subgroup of G
associated to the sort D.

3. The group νD ⊆ G is (clearly) definably isomorphic to a group that
is type-definable in the sort D.
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The linearity of D = K/O and D = Γ

Facts/Theorem
1. In Γ: Definable functions in Γ are generically affine:

f (x) = L(x − a) + f (a), for L : Γn → Γ additive.
This follows from QE, either for ordered vector space or
Presburger arithmetic.

2. (HHP) In K/O, all settings: every definable function is generically
affine (uses definable Skolem functions in K and 1-h-minimality).

Using “group-chunk” methods, a-la Marikova,

Corollary
If D = Γ or D = K/O then νD ⊆ G is definably isomorphic to a type
definable subgroup of (Dn,+).
When D = K/O then we can replace ν by a definable subgroup of G.
In both cases, νD has unbounded exponent.
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The case of D = K and real closed D = k

Definable functions in K |= ACVF∨T−convex ∨ pcF and in o-minimal
k are generically differentiable with respect to K and k, respectively.
Again, using group Chunk a-la-Marikova,

Corollary
If D = K or k as above, then νD can be endowed with the structure of a
differentiable group w.r to K and k.

Corollary
The group νD is torsion-free (so G has unbounded exponent)

Proof (thanks to Starchenko)
▶ The group is differentiable. Consider M(x , y) = x · y .
▶ The Jacobian of M at (e,e) is Jac(M)e,e(u, v) = u + v .
▶ ⇒ Jac(x 7→ xn)e(v) = nv ̸= 0 (char K , char k ̸= 0).
▶ Hence, xn ̸= e for x sufficiently close to e.
▶ ⇒ νD is torsion-free.

41



Thoughts and Open questions

The dp-minimal case- a warning
It easily follows from the main theorem that there is no finite-to-finite
correspondence between infinite subsets of K ,K/O.Γ,k. Thus, if G is
dp-minimal then it can be in correspondence with exactly one of the
fours sorts.
However, if G ∼ D and H ⊆ G normal infinite then G/H might be in
correspondence with a different D.
E.g. G = K/m and k = O/m ⊆ G but G/k ∼= K/O.

Given an interpretable group G,
• Is the sum of dp-rk(νD), for D = K ,K/O,k, Γ, equal to dp-rk(G)?
• Is dim(G) = dim(νD), for D = K (here dim is the geometric
dimension)?
• What is the interaction between the four different groups νD ’s?
• Can the results be extended to the general P-minimal setting, to
ACVFp?
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Interpretable fields

Using similar methods, we proved earlier:

Theorem
Let K be either
(i) (V-minimal expansion of ) ACVF(0,0), or
(ii) power bounded, T -convex, or
(iii) P-minimal with generic differentiability.

If F is interpretable field in K then it is definably isomorphic to a finite
extension of K or k.
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