Interpretable groups and fields in various valued fields

Kobi Peterzil (joint with Yatir Halevi and Assaf Hasson)

Department of Mathematics, University of Haifa

> June 2022 Cetraro, Italy

> > 1

What is the project?

Let $\mathcal{K} = (\mathcal{K}, +, \cdot, \mathbf{v}, \cdots)$ be an expansion of a valued field. Under additional assumptions, we want to study definable and interpretable groups and fields in \mathcal{K} .

What is meant here by "Interpretable"?

A group $(G; \cdot)$ is *interpretable* in \mathcal{K} if there are (i) definable set $X \subseteq K^n$ and a definable equivalence relation E on X, and

(ii) a function $M: (X/E)^2 \to X/E$ such that

 $(G; \cdot) \simeq (X/E; M)$, and the preimage under π of Graph(M) is a definable subset of X^3 .

An interpretable field is similarly defined.

Talk I. 3 settings and 4 distinguished sorts-the Closed Ball Property

Talk II. Dimension, rank and the Independent Neighborhood Property

Talk III. Infinitesimal subgroups of an interpretable group

Valued Fields

Definition

A (non-archimedean) valuation on a field *K* is a map $v : K \to \Gamma \cup \{\infty\}$, for Γ an ordered abelian group, satisfying:

1. $v(x) = \infty \Leftrightarrow x = 0$.

2. $v(x \cdot y) = v(x) + v(y)$ (a homomorphism : $K^{\times} \to (\Gamma, +)$).

3. $v(x+y) \ge \min\{v(x), v(y)\}$

Notation

For $\gamma \in \Gamma$, $a \in K$,

 $B_{>\gamma}(a) = \{x \in K : v(x-a) > \gamma\} \quad B_{\geq \gamma}(a) = \{x \in K : v(x-a) \ge \gamma\}.$

- $\mathcal{O} = B_{\geq 0}$ the valuation ring
- $\mathbf{m} = B_{>0} \subseteq \mathcal{O}$ the maximal ideal
- $\mathbf{k} = \mathcal{O}/\mathbf{m}$ the residue field

Some basic examples of valued fields

• K = k((t)) the field of Laurent series of some field kLet $v(\sum_{k \in \mathbb{Z}} a_k t^k) = min\{k : a_k \neq 0\}$. Here $\Gamma = \mathbb{Z}$, and $\mathbf{k} = k$.

• (*p*-adic valuation) Consider \mathbb{Q} , fix *p* prime, and define v(a/b) = n if $a/b = p^n(a'/b')$ with gcd(a', b') = 1. Here $\Gamma = \mathbb{Z}$ and $\mathbf{k} = \mathbb{F}_p$, The valuation *v* endows \mathbb{Q} with a metric $d(x, y) = p^{-v(x-y)} \in \mathbb{R}$.

• The *p*-adic field, \mathbb{Q}_p = the completion of \mathbb{Q} with respect to the *p*-adic metric. The elements can be written as

$$\sum_{n \ge m} a_k p^k,$$

with $m \in \mathbb{Z}$, $0 \leq a_k \leq p - 1$, and addition with "carry over". We have $\Gamma = \mathbb{Z}$ and $\mathbf{k} = \mathbb{F}_p$.

Finite extensions of Q_p admit valuations extending the *p*-adic one.
Here Γ ≃ Z, k = finite extension of F_p.

The 3 main settings, with logic

We start with $\mathcal{K} = (K; +, \cdot, v)$ a valued field in the signature of $+, \cdot, v$, equivalently $\mathcal{K} = (K; +, \cdot, \mathcal{O})$, where \mathcal{O} the valuation ring.

• pCF, *p*-adically closed fields.

 \mathcal{K} is elementarily equivalent to finite extensions of \mathbb{Q}_p . We shall also consider "P-minimal expansions" (to be defined).

• RCVF, Real closed valued fields.

 $\mathcal{K} = (K; +, \cdot, <, \mathcal{O})$, where *K* is a real closed field and $\mathcal{O} \subseteq K$ a nontrivial convex (valuation) subring (containing 1!).

We shall also consider "*T*-convex, power bounded expansions" (t.b.d).

• ACVF_{0,0}, algebraically closed valued fields.

 $\mathcal{K} = (K; +, \cdot, \mathcal{O})$ be an algebraically closed field, char(K) = 0, \mathcal{O} a nontrivial valuation ring, $char(\mathbf{k}) = \mathbf{0}$.

We shall also consider "V-minimal expansions" (not to be defined....).

P-minimal expansions of *p*-adically closed fields

Fix prime p, and assume that K is a p-adically closed field.

Main properties

- The residue field **k** is a finite extension of \mathbb{F}_p .
- The ordered value group Γ (with the induced structure) is \equiv to ($\mathbb{Z}; <, +$), namely a \mathbb{Z} -group. (Note, closed balls in *K* are open balls).
- (Macintyre) Every definable subset of *K* is a boolean combination of singletons, balls and cosets of $P_n = \{x \in K^* : \exists y \in K \ y^n = x\}$.
- (v. d. Dries) \mathcal{K} has definable Skolem function (for the home sort \mathcal{K} !).

Definition (Haskell-Macpherson)

An expansion $\mathcal{K} = (\mathcal{K}; +, \cdot, \mathbf{v}, \cdots)$ is *P-minimal* if for every $\mathcal{K}' \equiv \mathcal{K}$, (i) $\Gamma_{\mathcal{K}'}$ is a \mathbb{Z} -group, (ii) every definable subset of \mathcal{K}' is definable in the field language.

v.d.Dries-Haskell-Macpherson: $Th(\mathbb{Q}_p, \mathcal{L}_{an})$ is P-minimal.

The closed ball property-the P-minimal case

Theorem

Assume that \mathcal{K} is P-minimal.

If $X \subseteq K$ is definable and intersects infinitely many closed 0-balls then X contains a closed ball of radius < 0.

In fact, for every $k \in \mathbb{N}$, X contains a ball of radius < -k.

A preliminary observation

Every ball with (valuative) radius in \mathbb{Z} intersects only finitely many closed 0-balls. Indeed, this follows directly from the fact that the residue field is finite.

Proof of closed ball prop. (thanks to D. Macpherson)

(For simplicity of presentation, assume saturation)

- Using P-minimality (and +-translation), we may assume X = {x ∈ K : γ₁ < v(x) < γ₂ and λx ∈ P_n}, for γ₁, γ₂ ∈ Γ ∪ {±∞}, and λ ∈ K, the intersection of an annulus with a coset of P^{*}_n.
- ▶ By the observation, $\gamma_1 < \mathbb{Z}$. Hence, there exists $x_0 \in X$ with $v(x_0) = \gamma_0 < \mathbb{Z}$. So, $\gamma_0 < \gamma_2$.
- We claim that $B_{\geq \gamma_0/2}(x_0) \subseteq X$:
- ► If $x \in B_{\geq \gamma_0/2}(x_0)$ then $\gamma_1 < v(x) = v(x_0) < \gamma_2$. Enough to see $x^{-1}x_0 \in P_n^*$ (hence also $\lambda x \in P_n^*$):
- Let $f(Y) = Y^n x^{-1}x_0 \in \mathcal{O}[Y]$.
- ► $v(f(1)) = v(1 x^{-1}x_0) = v((x x_0)/x) = v(x x_0) v(x) = -\gamma_0/2 > \mathbb{N}.$
- ▶ $v(f'(1)) = v(n) \in \mathbb{N}$, so v(f(1)) > 2v(f'(1)).
- ▶ By Hensel's lemma, f(Y) has a root in \mathcal{O} , hence $x^{-1}x_0 \in P_n$.

T-convex real closed valued fields

Let *K* be real closed, $\mathcal{M} = (K; <, +, \cdot, \cdots)$ o-minimal, polynomially bounded (or "power bounded").

Let $\mathcal{O} \subsetneq K$ be a convex ring, closed under all \varnothing -definable continuous functions $f : \mathcal{O} \to K$ (*T*-convex). In particular, \mathcal{O} is a valuation ring.

Theorem (v.d. Dries-Lewenberg, v.d. Dries)

The expansion $\mathcal{K} = (\mathcal{K}; <, +, \cdot, \mathcal{O}, \cdots,)$ is a real closed valued field.

• (no need for "power bounded") ($K :<, \cdots$) is weakly o-minimal and has definable Skolem functions, after naming a >> O.

• The residue field **k**, with induced structure, is an o-minimal structure, elementarily equivalent to \mathcal{M} .

• The value group Γ , with the induced structure, is an ordered vector space, over "the field of powers".

• (Tyne) Every definable subset of K is a boolean combination of balls and intervals.

The closed balls property-the T-convex case

Theorem

Assume $X \subseteq K$ is a definable set, which intersects infinitely many closed balls of radius 0. Then X contains at least one closed ball of radius < 0. Note that this fails for open balls.

Proof:

- By weak o-minimality, X is a finite union of convex subsets of K so we may assume that X is convex.
- Balls are convex sets. Hence, X must contain infinitely many closed 0-balls.
- (Because balls are closed) There are $x_1 < x_2$ in X with $v(x_1 x_2) = \gamma < 0$.
- ► The ball $B_{\geq \gamma/2}(\frac{x_1+x_2}{2})$ is contained in the interval $(x_1, x_2) \subseteq X$.

C-minimal expansions of ACVF₀.

Definition

An expansion $\mathcal{K} = (\mathcal{K}; +, \cdot, \mathbf{v} \cdots)$ of algebraically closed valued field of char **0** is *C*-minimal if in every $\mathcal{K}' \equiv \mathcal{K}$, every definable subset of \mathcal{K}' is quantifier-free definable in the valued field language.

Theorems

- 1. (Robinson) Algebraically closed valued fields are C-minimal.
- 2. (Haskell-Macpherson) If \mathcal{K} is C-minimal then

• Γ, with induced structure, is an ordered divisible abelian group (o-minimal).

• The residue field **k**, with induces structure, is a strongly minimal expansion of an algebraically closed field.

The closed ball property, the C-minimal case

Theorem

If \mathcal{K} is C-minimal and $X \subseteq K$ definable and intersects infinitely many closed 0-balls then X contains a closed ball of radius $\gamma < 0$.

Below, a maximal sub-ball of X is a ball $B \subseteq X$ which is not properly contained in any other ball in X.

Conclusion in all settings from the closed ball property

If $X \subseteq K$ is definable then there are at most finitely many maximal closed sub-balls of X of every fixed radius in X.

Elimination of imaginaries

The "correct" model theoretic machinery isolates some basic sorts in \mathcal{M}^{eq} and reduces analysis of **all** definable quotients to these sorts.

Sometimes these sorts are not needed (ACF, o-minimal expansions of groups, DCF_0)

Some theorems on elimination of imaginaries in valued fields

- (Haskell-Hrushovski-Macpherson) Algebraically closed valued fields eliminate imaginaries when we add "geometric sorts".
- (Mellor) Real closed valued fields eliminate imaginaries with the "geometric sorts".
- (Hrushovski, Martin, Rideau-Kikuchi) *p*-adically closed fields eliminate imaginaries in appropriate language.

The 4 distinguished sorts

Difficulties in applications of the EI results

The geometric sorts are complex, of unbounded dimension, it is not simple to understand definable quotients through them.

A lazy way out

Instead, we drop the hope to **fully** analyze interpretable groups and fields via the special sorts. We focus our attention on 4 "one dimensional distinguished sorts", and analyze groups and fields **locally** through these.

The 4 distinguished sorts

- K
- $\mathcal{O}/\mathbf{m} = \mathbf{k}$, open 0-balls.
- K/O, the closed 0-balls.
- $K^*/\mathcal{O}^* = \Gamma$.

Reduction to the 4 distinguished sorts

Theorem: Reduction to the distinguished sorts

Let $\mathcal{K} = (\mathcal{K}; +, \cdot, \cdots)$ be an ω -saturated

(i) C-minimal expansion of ACVF, or

- (ii) T-convex expansion of RCVF, or
- (iii) *P*-minimal expansion of *p*-adically closed field.

If X/E is a definable infinite quotient, $X \subseteq K^n$, then there exists an infinite definable $Y \subseteq X/E$, and a definable finite-to-finite correspondence between Y and a subset of K, k, K/\mathcal{O} , or Γ .

Proof

Step 1: (totally general) There exists a finite-to-finite definable correspondence between an infinite subsets of X/E and K/E_1 for some definable equivalence relation E_1 on K:

This is discrete mathematics (no connection to fields). Exercise.

Step 2

Note: all value groups have Definable Choice We have X/E, for $X \subseteq K$.

- For each *E*-class $C \in X/E$, let $S_{C,max}$ be the set of all maximal balls (**open, closed, or singletons**) inside *C*. It is definable.
- Using Definable Choice, let γ_C ∈ Γ ∪ {∞} be one of the radii of balls in S_{C,max}, We may assume that for all C ∈ X/E, all b ∈ S_{max,C} have the same radius γ(C).
- **Case 1** The map $C \mapsto \gamma(C)$ is finite-to-one. Then $X/E \sim \Gamma$.
- Case 2 There is γ₀ ∈ Γ with γ⁻¹(γ₀) ⊆ X/E infinite. This is the new X/E. Now, all maximal balls in all classes have the same radius γ₀.

Proof continues

So we now assume that for every class $C \in X/E$, every maximal ball has the same radius γ_0 .

- If $\gamma_0 = \infty$ then every *C* is a union of isolated points so finite. $X/E \sim K$.
- So assume γ₀ ∈ Γ. By the closed ball property, each C intersects at most finitely many closed balls of radius γ₀.
- So, we have a 1-finite map from X/E into " the closed balls of radius γ₀" ~ K/O.
- Case 2.1 Each closed ball of radius γ₀ intersects at most finitely many C's. In this case X/E ~ X/O.
- ► **Case 2.2** Some closed ball b_0 of radius γ_0 intersects ∞-many classes *C*. WMA all balls in $S_{max,C}$ are contained in b_0 , so balls in $S_{max,C}$ must be open..... Working in $B_{\geq \gamma_0}/B_{\geq \gamma_0} \sim \mathbf{k}$, we get $X/E \sim \mathbf{k}$.

Dimension and rank

In all settings (ACVF, RCVF, pCF), in the home sort *K*, *acl* satisfies Steinitz Exchange and \exists^{∞} is eliminated, thus these are **geometric** structures-we have a good notion of dimension with additivity:

 $\forall \bar{a}, \bar{b} \in K$, and A, dim $(\bar{a}, \bar{b}/A) = \dim(\bar{a}/\bar{b}A) + \dim(\bar{b}/A)$.

However, what is a good dimension for definable quotients?

Option 1

(Gagelman 2004): If D a geometric structure then one can extend dimension to D^{eq} and maintain additivity.

Problem: The sorts Γ , K/O and **k** are all 0-dimensional (because the equivalence classes are 1-dimensional), so we "lose them".

Option 2: dp-rank (Usvyatsov, 2009)

The notion of dp-rk is defined for any tuple and definable set in \mathcal{M}^{eq} . (we omit the definition). We have: dp-rk(\mathcal{M}) < ∞ iff $Th(\mathcal{M})$ is NIP.

Basic properties

(1) dp-rk(X) = 0 iff X is finite.

- (2) If $f: X \to Y$ is definable then dp-rk(Y) \leq dp-rk(X).
- (3) $dp-rk(X \times Y) = dp-rk(X) + dp-rk(Y)$.
- $(4)dp-rk(X \cup Y) = \max\{dp-rk(X), dp-rk(Y)\}.$
- (5) (Subadditivity)(Kaplan-Onshuus-Usvyatsov 2011)

 $dp-rk(a, b/A) \leq dp-rk(a/bA) + dp-rk(b/A)$

The rank of the distinguished sorts is 1

- In all of our cases, dp-rk(K) = 1 (K is dp-minimal).
- dp-rk(K/O) = dp-rk(Γ) = 1 (infinite image of an infinite subset of K).
- If **k** infinite then $dp-rk(\mathbf{k}) = \mathbf{1}$.

An important example K/\mathcal{O}

Take $\mathcal{K} = (\mathcal{K}; <, +, \cdot, \mathcal{O})$ an RCVF.

- Since O is a convex subgroup, the sort (K/O; +, <) is a linearly ordered, weakly o-minimal (non-pure!) group.</p>
- Fix $\alpha \in \mathbf{m}$ ($v(\alpha) > 0$). For $x y \in \mathcal{O}$, $\alpha \cdot x \alpha \cdot y \in \mathcal{O}$, Thus $x \mapsto \alpha \cdot x$ descends to an endomorphism $\alpha^* : K/\mathcal{O} \to K/\mathcal{O}$.
- ker(α*) = {x + O : α ⋅ x ∈ O} = {x + O : v(x) ≥ -v(α)}, so α* is locally constant. ⇒ K/O is not a geometric structure-No Exchange:Take a ∈ K generic over α, b = α*(a). Then b ∈ acl(a, α) \ acl(α) but a ∉ acl(b, α).

Although there is no Exchange , $dp-rk(\bar{b}/A) = dim_{acl}(\bar{b}/A)$!!!

 $\dim_{acl}(a_1, a_2, \dots, a_n) =$ maximal size of an *acl*-independent sub-tuple.

Fact: dp-rank and algebraic closure

In all distinguished sorts in our settings, $dp-rk = dim_{acl}$

Simon-Walsberg uniformities (2015)

Definition

Let *D* be a dp-minimal expansion of a definable Hausdorff uniformity (e.g. topological group). We call it a *an SW-uniformity* if

- 1. D has no isolated points.
- 2. Every infinite definable $X \subseteq D$ has non-empty interior.

Examples

• O-minimal and weakly o-minimal structures (dense linear order).

 (Jahnke-Simon-Walsberg, Johnson) Every dp-minimal expansion of (nontrivially) valued field is an sw uniformity.
in pCE (E < +) and K (C) are not SW uniformities.

• in pCF, $(\Gamma, <, +)$ and K/O are not SW uniformities!

Important properties of SW uniformities (Simon-Walsberg)

(1) $dp-rk = dim_{acl}$. (2) Definable functions are continuous at generic points. (3) dp-rk *Frontier*(*X*) < dp-rk(X).

The Independent Neighborhood property, version 1

A topological version

Let *D* be an SW uniformity. Let $X \subseteq D^n$ be a definable set (over any parameters), $a \in Int(X)$, and *A* any parameter set. Then there exists $C \supseteq A$ and a *C*-definable open $U \subseteq X$, $a \in U$, such that dp-rk(a/C) = dp-rk(a/A). Moreover, $U = U_1 \times \cdots \cup_n \subseteq D^n$.

Example

 \mathcal{M} o-minimal, $X \subseteq M^2$, $\langle a_1, a_2 \rangle \in Int(X)$. Then we can find open intervals $(b_1, b_2) \ni a_1$, $(b_3, b_4) \ni a_2$, such that $(b_1, b_2) \times (b_3, b_4) \subseteq X$ and dim $(a/b_1 \cdots b_4) = \dim(a/A)$.

A simple application

Assume that *D* is an SW uniformity $Y \subseteq D^n$ definable and $f : Y \to Z$ definable finite-to-one, all defined over *A*. Then, for every generic $x_0 \in Y$ over *A*, there exists $C \supseteq A$, such that $dp \operatorname{rk}(x_0/C) = dp \operatorname{rk}(x_0/A)$, and a *C*-definable open $U \ni x_0$ such that $f \upharpoonright U \cap Y$ is injective.

Proof First choose any open $X \ni x_0$ such that $f^{-1}(f(x_0)) \cap X = \{x_0\}$. Then apply the IN property to replace X by $U \subseteq X$.

The Independent Neighborhood property, version 2

The case of \mathbb{Z} and $\mathbb{Q}_p/\mathbb{Z}_p$

What to do with distinguished sorts that are not SW uniformities? E.g. Γ and K/\mathcal{O} in the *p*-adic case: the natural topology on \mathbb{Z} and $\mathbb{Q}_p/\mathbb{Z}_p$ is discrete.

a non-topological version, for dp - rk(D) = 1

Property (IN) For *A*, *B* any parameter sets, $X \subseteq D^n B$ -definable, and $a \in X$, such that dp-rk(a/B) = n = dp-rk(a/A).

Then there exists $C \supseteq A$ and a *C*-definable $U \subseteq X$ such that $a \in U$ and dp-rk(a/C) = n. Moreover, $U = U_1 \times \cdots \times U_n \subseteq D^n$.

Examples of Property (IN)

- Property (IN) fails for, say, ACF.
- Property (IN) holds for SW uniformities, and for Γ and K/O in pCF.
- Question/Conjecture: Is (IN) true in every distal (dp-minimal) structure?

An application of property (IN)

Theorem (A filter base)

Assume that dp-rk(D) = 1 satisfies (IN), and $a \in D^n$, with $dp-rk(a/\emptyset) = n$. Consider the global type:

 $\nu(a) = \{X \subseteq D^n \text{ definable over } A \subseteq M : a \in X, \text{ and } dp-rk(a/A) = n\}.$

Then (1) $D^n \in \nu(a)$. (2) For every $X, Y \in \nu(a)$ there is $Z \in \nu(a)$ such that $Z \subseteq X \cap Y$. In particular, $\nu(a)$ is consistent of rank *n*.

Proof

- Assume X, Y are definable over A, B, respectively.
- ▶ By (IN), there are $C \supset A$, and $Y' \subseteq Y$ which is *C*-definable, $a \in Y'$, such that dp-rk(a/C) = n.
- ▶ Let $Z := X \cap Y' \subseteq X \cap Y$. Then Z is definable over C, $a \in Z$, and dp-rk(a/C) = n, so $Z \in \nu(a)$.

Summary so far

Which distinguished sorts are SW uniformities?

• In the ACVF case, K, K/\mathcal{O} and Γ are SW uniformities. (**k** is stable, so no definable Hausdorff topology).

- In the RCVF case, K, K/O, Γ , and **k** are SW uniformities.
- in the pCF case, only K is an SW uniformity. K/\mathcal{O} and Γ are not.

Which distinguished sorts satisfy property (IN)?

- All SW uniformities.
- **Proposition**: In the pCF case, K/O and Γ satisfy (IN) (**k** is finite)
- In the ACVF case, k does not satisfy (IN).

Interpretable groups

Let *G* be an interpretable group in one of our settings.

We saw that there is a definable correspondence between an infinite $X \subseteq G$ and one of the distinguished sorts $D = K, K/\mathcal{O}, \mathbf{k}, \Gamma$.

With a bit more work, there is a finite-to-one map $f: X \subseteq G \rightarrow D^n$.

Example of dp-rk(G) = 1

• G = K/O. In the ACVF and RCVF, G is a divisible abelian group.

In \mathbb{Q}_p : $G = \mathbb{Q}_p / \mathbb{Z}_p = \mathbb{Z}(p^{\infty})$ is the Prüfer group.

• (G = RV)

 $1 \rightarrow \mathbf{k}^* \longrightarrow RV = K^*/(1 + \mathbf{m}) \longrightarrow \Gamma \rightarrow 0$. It contains a copy of \mathbf{k}^* . When **k** is finite (pCF), then the angular component is definable, and then the set { $x(1 + \mathbf{m}) \in RV : ac(x) = 1$ } in bijection with Γ .

• G = (K/m, +). It is dp-minimal and contains a copy of (k, +).

Another example

- Let $G = (K, +) \times (K/O, +)$.
- dp-rk(G) = 2.
- *G* has definable sets in correspondence (even bijection) with both *K* and K/\mathcal{O} .
- Clearly, every $K \times \{y\}$ is such a set. Also, the graph of $\pi : K \to K/\mathcal{O}$
- is a definable subset (subgroup) of G in bijection with K.
- The only subsets of *G* in finite-to-finite correspondence (bijection) with K/\mathcal{O} are of the form $\{a\} \times K/\mathcal{O}$.

Interpretable groups-the main theorem

Main theorem

Let $\mathcal{K} = (\mathcal{K}; +, \cdot, \mathbf{v}, \cdots)$ be either

(i) a (V-minimal expansion of) ACVF_{0,0}, or

(ii) a polynomially (power) bounded T-convex expansion of RCVF, or (iii) a pCF.

Let G be an infinite group interpretable in \mathcal{K} .

Then, after possibly replacing *G* with G/H for *H* finite normal, there exists an infinite type-definable subgroup $\nu \subseteq G$ such that:

- 1. ν is definably isomorphic to a type definable group in K or in k, or
- 2. ν is definably isomorphic to a type definable **subgroup** of $(\Gamma^n, +)$, *or* a **definable** subgroup of $((K/\mathcal{O})^n, +)$.

Moreover, in all cases, ν has unbounded exponent.

Dp-minimal groups

Corollary

If G as above, and dp-rk(G) = 1 then G is abelian-by-finite.

Proof

- By Simon, G contains a definable abelian normal H ⊆ G such that G/H has bounded exponent.
- By Theorem, if G/H is infinite then it contains a subgroup of unbounded exponent, hence G/H must be finite.

Simonetta's counter-example

There is a dp-minimal group in $ACVF_{\rho,p}$ that is solvable of step 2 (so not abelian-by-finite).

Previous (partial?) results, on groups and fields in valued fields

- Pillay on definable groups and fields in \mathbb{Q}_p ,
- Hrushovski-Pillay on definable groups in local fields,
- Hrushovski-Rideau-Kikuchi on metastable groups and interpretable fields in ACVF,
- Bays-Pe, on definable fields in RCVF
- Acosta on 1-dim definable groups in \mathbb{Q}_p ,
- ► Johnson-Yao on (non) definably compact groups in Q_p,
- Johnson on interpretable groups in \mathbb{Q}_p ,
- Onshuus-Vacaria groups in Presburger arithmetic.
- Gismatulin, Halupczock and Macpherson on definably simple groups in valued fields (in preperation).
- Cassani, on interpretability of trees in Q_p (in preparation)
- Alouf, Fornasiero, Gonzales, interpretable fields of dimension > 0 in Q_p (in preparation)

Back to the Theorem: Strong internality to a sort D

We have an interpretable group G in $\mathcal{K} \models$ RCVF, ACVF or pCF.

Definition

A definable $X \subseteq G$ is called **strongly internal** to a set D if there is an injective $f : X \to D^n$. If X has maximal dp-rank as such, we call it *D*-critical.

If $f: X \to D^n$ is finite-to-one we call X almost strongly internal to D. And if it has maximal dp-rank as such, and minimal finite fibers then we call it almost D-critical.

Warning

If $X \subseteq G$ is *D*-critical it does **not** mean that it is also almost *D*-critical. (Example, at the end if there is time)

So far, we showed:

There exists an infinite definable $X \subseteq G$, which is almost strongly internal to $D = K, K/\mathcal{O}, \mathbf{k}$ or Γ .

The strongly minimal case

Let \mathcal{K} be an ACVF.

Assume that there exists an infinite subset of *G* that is almost strongly internal to the residue field **k**. Then there exists a definable infinite normal subgroup $H \leq G$ and a finite $H_0 \leq H$ such that H/H_0 is definably isomoprhic to a **k**-algebraic group.

The proof is some local version of Zil'ber's indecomposability theorem.

Example

 $G = (K/\mathbf{m}, +)$. Then $G \supseteq H = \mathcal{O}/\mathbf{m} \cong \mathbf{k}$, and H is algebraic.

Note: The quotient G/H is again of rank 1, and $G/H \cong K/\mathcal{O}$.

The unstable case: \neg ($\mathcal{K} \models ACVF$ and $D = \mathbf{k}$)

Assume that either $\mathcal{K} \models \text{RCVF}$, or $\mathcal{K} \models \text{pCF}$, or $\mathcal{K} \models \text{ACVF}$, but $D \neq \mathbf{k}$.

Main Lemma (almost true)

Assume that $X, Y \subseteq G$ are *A*-definable, infinite and almost *D*-critical, and let $(a, b) \in X \times Y$ be generic, namely (dp-rk(a, b/A) = dp-rk(X) + dp-rk(Y) = 2dp-rk(X)).

Then, there are $X_1 \subseteq X$, $Y_1 \subseteq Y$, $(a, b) \in X_1 \times Y_1$, definable over $B \supseteq A$, such that dp-rk(a, b/B) = dp-rk(a, b/A), such that

 $X_1 \cdot Y_1 \subseteq X \cdot b$ and $X_1 \cdot Y_1 \subseteq a \cdot Y$.

Warning

In the above $dp-rk(X_1 \cdot Y_1) = dp-rk(X) = dp-rk(Y)$ but we are **not** claiming that $dp-rk(X \cdot Y) = dp-rk(X) = dp-rk(Y)!$ This is false in general.

Example-in any of the settings

Let $\pi : K \to K/\mathcal{O}$, and $G = K \times K/\mathcal{O}$, dp-rk(G) = 2.

 $X = \{(x, \pi(x)) \in G : x \in K\} \ Y = \{(x, -\pi(x)) \in G : x \in K\}.$

Each has rank 1, and is in local bijection with K, so X, Y are strongly internal to K. They are also of maximal rank in G as such, so K-critical in G.

For $a = (x, \pi(x)) \in X$ and $b = (y, -\pi(y)) \in Y$, take

 $X_1 = (x + O) \times \{\pi(x)\} \subseteq X$ and $Y_1 = (y + O) \times \{-\pi(y)\} \subseteq Y$.

These are cosets of the same subgroup of *G*, so $X_1 + Y_1 = (x + y + O) \times \pi(x) + \pi(y) \subseteq X + b$. So, dp-rk $(X_1 + Y_1) = 1$. However, X + Y = G, so dp-rk(X + Y) = 2.

Interpretable groups (cont)

From finite-to-one to injective

Assume that $X \subseteq G$ is almost *D*-critical, witnessed by $f : X \to D^n$ (so f has smallest possible fibers). Then there is a finite normal subgroup $H \subseteq G$, and $X' \subseteq X$ with dp-rk(X') = dp-rk(X), such that $f : X' \to D^n$ factors through $\pi : G \to G/H$.

Proof (a-la Hrushovski's thesis). For $(a, b) \in X^2$ generic, get $X_1, Y_1 \subseteq X$ as in main lemma. Then $X_1 \cdot Y_1 \subseteq X \cdot b$. Let $(a_1, b_1) \in X_1 \times Y_1$ generic over (a, b). Consider $x \mapsto (f(x), f(xb_1b^{-1})) \in D^{2n}$. It cannot have smaller fibers that f, thus... (here $[x]_f = f^{-1}(f(x))$).

$$[a_1]_f \cdot b_1 = [a_1]_f \cdot [b_1]_f = a \cdot [b_1]_f.$$

Finish using the following fact on groups

If $A, B \subseteq G$ and $A \cdot b = A \cdot B = a \cdot B$ then A and B are right and left cosets of the same subgroup H.

The infinitesimal vicinity

After replacing G with G/H for H finite and normal

We assume now that there exists an infinite definable $X \subseteq G$ which can be injected into D^m , for some distinguished sort D, all over some A. We take it of maximal rank, namely D-critical. We fix $a \in X$ with dp-rk(a/A) = dp-rk(X) =: n.

Definition: The infinitesimal vicinity of a in X

We consider the **global** partial type:

 $\nu_X(a) = \{ Y \subseteq X \text{ definable over } B \subseteq M : a \in Y, dp-rk(a/B) = n \}.$

By the "filter base" result, it is consistent and $dp-rk(\nu_X(a)) = dp-rk(X)$.

- When D is o-minimal then v_X(a) is logically equivalent to the intersection of all K-definable open neighborhoods of a in X.
- When D = Γ is a Z-group, and a ∈ X = n · Γ, then ν_X(a) is all *K*-definable "long" intervals containing a in nΓ. Well, not really.

The main properties of $\nu_X(a)$

Using the Main Lemma, we have:

Theorem

For $X \subseteq G$, a *D*-critical set, and $a \in X$ generic.

- 1. The set $\nu_X(a)$ is a coset of a type def. subgroup $\nu_X(a)a^{-1} \subseteq G$.
- 2. This subgroup does not depend on choice of *a* and the *D*-critical *X*, denote it by $\nu_D \subseteq G$, the type-definable subgroup of *G* associated to the sort *D*.
- 3. The group $\nu_D \subseteq G$ is (clearly) definably isomorphic to a group that is type-definable in the sort D.

The linearity of $D = K/\mathcal{O}$ and $D = \Gamma$

Facts/Theorem

- 1. In Γ : Definable functions in Γ are generically affine: f(x) = L(x - a) + f(a), for $L : \Gamma^n \to \Gamma$ additive. This follows from QE, either for ordered vector space or Presburger arithmetic.
- 2. (HHP) In K/O, all settings: every definable function is generically affine (uses definable Skolem functions in K and 1-h-minimality).

Using "group-chunk" methods, a-la Marikova,

Corollary

If $D = \Gamma$ or $D = K/\mathcal{O}$ then $\nu_D \subseteq G$ is definably isomorphic to a type definable **subgroup of** $(D^n, +)$.

When D = K/O then we can replace ν by a **definable** subgroup of *G*. In both cases, ν_D has unbounded exponent.

The case of D = K and real closed $D = \mathbf{k}$

Definable functions in $K \models ACVF \lor T-convex \lor pcF$ and in o-minimal **k** are generically differentiable with respect to *K* and **k**, respectively. Again, using group Chunk a-la-Marikova,

Corollary

If D = K or **k** as above, then ν_D can be endowed with the structure of a differentiable group w.r to K and **k**.

Corollary

The group ν_D is torsion-free (so G has unbounded exponent)

Proof (thanks to Starchenko)

- The group is differentiable. Consider $M(x, y) = x \cdot y$.
- ► The Jacobian of *M* at (e, e) is $Jac(M)_{e,e}(u, v) = u + v$.
- ► \Rightarrow Jac($x \mapsto x^n$)_e(v) = $nv \neq 0$ (char K, char k $\neq 0$).
- Hence, $x^n \neq e$ for x sufficiently close to e.
- ► $\Rightarrow \nu_D$ is torsion-free.

Thoughts and Open questions

The dp-minimal case- a warning

It easily follows from the main theorem that there is no finite-to-finite correspondence between infinite subsets of $K, K/\mathcal{O}.\Gamma, \mathbf{k}$. Thus, if *G* is dp-minimal then it can be in correspondence with exactly one of the fours sorts.

However, if $G \sim D$ and $H \subseteq G$ normal infinite then G/H might be in correspondence with a different D.

E.g. G = K/m and $\mathbf{k} = \mathcal{O}/m \subseteq G$ but $G/\mathbf{k} \cong K/\mathcal{O}$.

Given an interpretable group G,

- Is the sum of dp-rk(ν_D), for $D = K, K/O, \mathbf{k}, \Gamma$, equal to dp-rk(G)?
- Is $\dim(G) = \dim(\nu_D)$, for D = K (here dim is the geometric dimension)?
- What is the interaction between the four different groups ν_D 's?
- Can the results be extended to the general P-minimal setting, to ACVF_p?

Using similar methods, we proved earlier:

Theorem

Let \mathcal{K} be either (i) (V-minimal expansion of) ACVF_(0,0), or (ii) power bounded, *T*-convex, or (iii) P-minimal with generic differentiability.

If *F* is interpretable field in \mathcal{K} then it is definably isomorphic to a finite extension of *K* or **k**.