Abstract number: I13 Invited

Real-world applications of Saturated-Absorption CAvity-Ring-down Spectroscopy (SCAR)

Delli Santi M.G.¹, Insero G.², Bartalini S.^{3,4}, Cancio Pastor P.^{4,5}, Galli I.^{4,5}, Giusfredi G.⁴, Mazzotti D.^{4,5}, De Natale P.^{†5,6}

¹National Research Council - Institute of Optics, Pozzuoli, Italy ²Istituto Nazionale di Ricerca Metrologica, Torino, Italy ³ppqSense S.r.l., Campi Bisenzio, Italy ⁴National Research Council - Institute of Optics, Sesto Fiorentino, Italy ⁵European Laboratory for Non-linear Spectroscopy, Sesto Fiorentino, Italy ⁶National Research Council - Institute of Optics, Firenze, Italy

[†]paolo.denatale@ino.cnr.it

Saturated-absorption cavity-ring-down spectroscopy, or SCAR, has pushed molecular detection to an unprecedented sensitivity of a few parts per quadrillion $(ppq)^1$. Technology has continuously progressed in the last ten years, since its first demonstration² and, among other new features, took to a portable instrumentation worldwide deployable. Recently, such a unique instrument for quantifying an elusive molecule, like ¹⁴CO₂ that accounts for only 10^{-12} the total amount of carbon dioxide in the biosphere, has been applied for addressing specific problems in very different areas of science and humanities. Results will be shown for SCAR application to the precise discrimination of biogenic vs. fossil content in materials and fuels³; to radiological assessment of nuclear waste and nuclear power plants decommissioning⁴; to ultra-sensitive dating of archeological samples from a 4,500 years old Sumerian site⁵.

Next applications aim to radiocarbon precise measurements in atmospheric samples. As is well known, carbon dioxide is the most significant anthropogenic Greenhouses Gas (GHG) in the atmosphere. The pre-industrial level of 278 ppm represented a balance of fluxes among atmosphere, oceans and land biosphere. Currently, the global averaged CO_2 mole fraction has increased up to 413 ppm⁶, mainly due to emissions from the combustion of fossil fuels and cement production. Therefore, distinguishing and measuring anthropogenic vs. biogenic CO_2 in the atmosphere is the key to quantify the anthropogenic contribution to Climate Change

Figure 1: . New Generation of C14-SCAR spectrometer.

¹1) Galli, I. et al., Optica **3**, 385 (2016).

²2) Galli, I. et al., Phys. Rev. Lett. 107, 270802 (2011).

³3) Delli Santi, M. G. et al., Adv. Photon. Res. 2, 202000069 (2021).

⁴Delli Santi *et al.*, *PNAS*, under review (2022).

⁵Delli Santi *et al.*, in preparation (2022).

⁶6) WMO GHG Bulletin, no. 17, www.library.wmo.int/doc_num.php?explnum_id=10904