Convergence analysis and parameter estimation for the iterated Arnoldi-Tikhonov method

Davide Bianchi^{*} Marco Donatelli[†] Davide Furchì[‡] Lothar Reichel[§]

November 9, 2023

Abstract

The Arnoldi-Tikhonov method is a well-established regularization technique for solving large-scale ill-posed linear inverse problems. This method leverages the Arnoldi decomposition to reduce computational complexity by projecting the discretized problem into a lower-dimensional Krylov subspace, in which it is solved. Our study considers the iterated Arnoldi-Tikhonov method and provides a thorough analysis that considers all approximation errors. Additionally, we propose a new strategy for choosing the regularization parameter. This choice yields more accurate approximate solutions than the standard Arnoldi-Tikhonov method. Moreover, the proposed method is robust with respect to the regularization parameter as confirmed in the numerical results.

^{*}School of Mathematics (Zhuhai), Sun Yat-sen University, Zhuhai 519082, China. E-mail: $\tt XXX$

[†]Dipartimento di Scienza e Alta Tecnologia, Università dell'Insubria, Como 22100, Italy. E-mail: marco.donatelli@uninsubria.it

[‡]Dipartimento di Scienza e Alta Tecnologia, Università dell'Insubria, Como 22100, Italy. E-mail: dfurchi@uninsubria.it

[§]Department of Mathematical Sciences, Kent State University, Kent, OH 44242, USA. E-mail: reichel@math.kent.edu