mail unicampaniaunicampania webcerca

    Bruno CARBONARO

    Insegnamento di CALCOLO DELLE PROBABILITA'

    Corso di laurea magistrale in MATEMATICA

    SSD: MAT/06

    CFU: 8,00

    ORE PER UNITÀ DIDATTICA: 64,00

    Periodo di Erogazione: Secondo Semestre

    Italiano

    Lingua di insegnamento

    ITALIANO

    Contenuti

    Strumenti matematici avanzati per lo studio del Calcolo delle Probabilità. Proprietà particolari delle variabili aleatorie. Processi stocastici rilevanti per le applicazioni

    Testi di riferimento

    B.CARBONARO & F. VITALE, Fondamenti di Probabilità e Statistica, CEA, Milano, 2010; B.CARBONARO & F. VITALE, Fondamenti di Probabilità,in corso di stesura
    G.F.LAWLER, Introduction to Stochastic Processes, Chapman and Hall, 2006

    Obiettivi formativi

    Fornire agli studenti le capacità di descrivere i fenomeni naturali, sociali ed economici in termini di processi stocastici, e l'abitudine mentale a modellarli come tali

    Prerequisiti

    Una buona conoscenza dell'analisi matematica del corso triennale, e almeno la conoscenza di base della probabilità elementari e delle variabili aleatorie fondamentali.

    Metodologie didattiche

    A good acquaintance of Calculus as it is studied in the Bachelor Course, and at least a basic knowledge of elementary probability and of the fundamental random variables

    Metodi di valutazione

    Esame orale su argomenti di teoria e problemi .

    Programma del corso

    Elementi di teoria della misura in R, con particolare riguardo alla rappresentazione integrale delle misure. Elementi di Teoria delle Distribuzioni. Funzioni convesse. Equazioni alle differenze finite. Proprietà particolari del valore atteso. Valore atteso condizionato. Funzione generatrice dei momenti. Funzione generatrice delle probabilità. Funzione caratteristica. Processo uniforme. Processo di Poisson. Marcia a caso. Rovina del giocatore. Catene di Markov discrete. Martingale.

    English

    Teaching language

    Italian

    Contents

    Advanced mathematical tools for the study of Probability Theory. Special properties of random variables. Relevant stochastic processes for applications

    Textbook and course materials

    B.CARBONARO & F. VITALE, Fondamenti di Probabilità e Statistica, CEA, Milano, 2010; B.CARBONARO & F. VITALE, Fondamenti di Probabilità,in preparation
    G.F.LAWLER, Introduction to Stochastic Processes, Chapman and Hall, 2006

    Course objectives

    Giving the students the ability to describe natural, social and economical phenomena in terms of stochastic processes, as well as the mental habit of modeling them as such

    Prerequisites

    A good acquaintance of Calculus as it is studied in the Bachelor Course, and at least a basic knowledge of elementary probability and of the fundamental random variables

    Teaching methods

    Front theoretical lectures with several applications and exercises and free discussion in the classroom.

    Evaluation methods

    Oral examination on topics from theory and problems

    Course Syllabus

    Elements of measure theory in R, with special concern with the integral representation of measures. Elements of Theory of Distributions. Convex functions. Finite Difference Equations. Special properties of the expected value. Conditional expected value. Special functions associated with a random variable and its moments. Uniform process. The Poisson process. The random walk. The gambler's ruin. Discrete Markov chains. Martingales.

    facebook logoinstagram buttonyoutube logotype